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Abstract

We establish connections between Dynamic Mode Decompositions (DMDs), vector
autoregressions, and linear state-space models, showing that DMD efficiently estimates
low-rank first-order VAR projection coefficients from high-dimensional data. When the
measurement matrix has full column rank, the recovered nonzero eigenvalues coincide
with those of the underlying state transition matrix. We apply DMD to a 100-household
heterogeneous-agent economy with complete markets and Gorman aggregation. From
high-dimensional household income and consumption panels, DMD successfully recov-
ers low-dimensional aggregate dynamics: estimated modes track latent aggregate states
with correlations exceeding 0.90, and cross-sectional loadings reveal the sharing rule
governing redistribution. This demonstrates DMD’s capacity to extract economically
meaningful low-dimensional structure from microeconomic panels.
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1 Introduction

Applied mathematicians have recently used Dynamic Mode Decompositions (DMDs)
as a “machine learning” technique to quantify non-random dynamical systems, includ-
ing fluid dynamics (e.g., see Brunton and Kutz (2022)). This paper instead uses DMDs
to quantify a dynamical system that is persistently buffeted by random shocks. We
describe connections among Dynamic Mode Decompositions (DMDs), vector autore-
gressions (VARs), and a special case of what Stock and Watson (2016) call dynamic
factor models. DMDs are calculated using singular value decompositions and asso-
ciated eigen decompositions, but of different objects than the ones that underlie the
dynamic factor models described by Stock and Watson. In this paper we show that,
for an observation-noise-free linear state-space model, the population first-order VAR
projection coefficient is reduced-rank and can be efficiently estimated and represented
by DMD. We use a Dynamic Mode Decomposition (DMD) to infer a reduced-rank
first-order VAR from a data set [y, y2,...,¥7, Y711)-

Through its connection to the Koopman operator, the DMD algorithm has also
been used to approximate nonlinear dynamics (see Williams et al. (2015), Brunton
et al. (2016), Mezic (2020)). Our model resembles those of Geweke (1977), Sargent
and Sims (1977), Geweke and Singleton (1981), Stock and Watson (2002), Bai (2003),
and Bai and Ng (2013), but our statistical model of hidden factors differs from theirs.
Like those authors, we estimate “non-structural Kepler-stage” descriptive models that
can compress data and reveal patterns. As Koopmans (1947) recommends, we want
eventually to interpret these empirical regularities with a “structural Newton-stage”
model that is cast in terms of parameters that describe market structures and decision
makers’ preferences, constraints, and information flows. Koopmans interpreted Burns
and Mitchell (1946) as such a “Kepler” stage model of business cycles, in contrast to the

structural, simultaneous stochastic difference equation models of business cycles that



could be constructed with tools developed by Koopmans (1950), Hood and Koopmans
(1953), and Marschak (1953).

This paper is organized as follows. Section 2 describes our statistical model, its
relationship to a reduced-rank first-order VAR, and its connections to Dynamic Mode
Decompositions. This section focuses on five objects:

1. A statistical model for a covariance-stationary stochastic process {y,}2_ ., that
takes the form of a special observation-noise-free LQG state-space model, where
y; isan M x 1 vector.

An innovations representation of that state-space model.

An infinite-order vector autoregression (VAR) for {y,}2_ .

- » N

A reduced-rank first-order VAR.
5. A Dynamic Mode Decomposition (DMD) of a data set [y;,ys,...,¥7, Y7i1)-

Section 2 describes situations in which
¢ items [1] and [2] are both valid representations of item [3]
e items [3] and [4] coincide
¢ item [5] provides a good way to estimate item [4]

Having acknowledged that we understand that a DMD provides a descriptive
statistical model, not what theoretical IO or macroeconomists call a “structural” model,
Section 3 proceeds to analyze the qualities of our Section 2 model as a statistical approxi-
mation to a particular structural dynamic stochastic general equilibrium (DSGE) model.
The model describes competitive equilibrium prices and quantities for a heterogeneous-
agent economy with what Milton Friedman called “homogenizing mechanisms” that
can put a factor structure into the dynamics of cross-sections of households’ income
and consumption rates. We design the DSGE model so that its equilibrium has a repre-
sentation that takes the form of a linear state-space model and an associated likelihood

function that can readily be compared via “information projection” techniques to its
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DMD counterpart for the same observable process.! The computational experiments in
our Section 3 laboratory are designed to set the stage for an empirical application to US
CEX data in Sargent et al. (2025). Section 4 describes differences between DMDs and
some other dynamic factor models that are widely used by economists. Section 5 offers

concluding remarks about promising applications.

2 Statistical Model Underlying DMD

Lety, be an M x 1 vector and let y'~!

= {y;_s}2, denote the full past. Throughout
we use L to denote orthogonality and work with centered observables with E[y,| = 0.
We take as baseline an observation-noise-free linear state-space model with poten-

tially rank-deficient measurement:

xtr1= A x4+ C wyyg
Ng X Ng Ng X Ng (1)
yt: G Xt,
M X Ng

where random shocks w1 ~ N(0,Iy,). Let r := rank(G) < min{M, N, }. When r <
M, {y,} is supported on the r-dimensional subspace range(G) C R and Cov(y,) is
singular. Equivalently, writing (1) at time ¢ gives x; = A x;_1 + C wy, so the innovation
w; drives y,. Assume A is stable so that {x;} and {y,} are covariance-stationary. The

optimal one-step-ahead prediction conditioned on x; is
Xep1 = Elxe | x¢) = Axy,
and the associated one-step-ahead prediction error covariance matrix is

E [(x¢41 —%¢+1) (Xe41 —5<t+1)T] =CcC'.

1See footnote 13 below.



The associated steady-state innovations representation is cast in terms of the one-

step-ahead prediction vector

< t
Xt+1 = E[Xt+1 \y ]
This innovations representation is

X1 = A X+ K ay,
Nz x1 Ng X Ng Ng XM
2)

]g’xtl = Mngit + ay,

where a; =y, — Ely, |y’ !], a; L y'!, and the steady-state Kalman gain is

K=AX .G (G, .G"T, (3)
where (-)* denotes the Moore-Penrose pseudoinverse?, and

Yoo = E [(x¢ —X¢) (x4 —it)—r}
is the positive semidefinite solution of the following algebraic matrix Riccati equation:

Yo =CC'+(A-KG)Z, (A-KG)". (4)

The population lag-1 linear projection coefficient is

B* = Cov(ys, yi-1) COV(Yt—l)Jr' 5)

Note that when Cov(y,_;) is singular, there are many matrices that yield the same

fitted values on range(Cov(y,;_,)). We adopt the unique Moore-Penrose representative.

2We use a pseudoinverse in (3) because G 2o, G has rank at most 7 := rank(G) and is singular when < M.
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Define the associated linear prediction error &; := y, — B*y,_;, so that

Y = B* Yi—1 €, (6)

M x M

Ele; y;ﬂ =0.

When the restriction E[e; ytt j] = 0 holds for all j > 1, (6) becomes a VAR(1) with
innovations orthogonal to the full past. Let 3, := Cov(x;) denote the stationary state

covariance that solves the Lyapunov equation
S, =A%, AT+CC".

The next proposition characterizes the lag-1 linear projection coefficient B* and its

relationship to the state transition matrix A.

Proposition 1. Let 3, := Cov(x;) under (1) and let B* be defined by (5). Then
(i) B* satisfies

B'=GAX,G'(GZ,G")"=GAGY, Gf =3%,G'(Gx,G")".

(ii) The following properties hold:

range(B*) C range(G), rank(B*) < rank(G),

B*v=Av, A # 0= v €range(G).

Proof. See Appendix A.1.1. O

Proposition 1 implies that, without further structure, the object identified from {y,}
is B, the best linear predictor of y, given y,_,. What this reveals about the underlying

state dynamics depends on whether the measurement map x; — y, = G x; is injective.



If rank(G) < N,, then B* = G A G3, depends on A only through its transformation
on the G-visible subspace, A is not identified from B* without additional restrictions,
and B* represents only the linear projection coefficient, which may differ from a VAR(1)
coefficient if the innovations are not white. This shows that full column rank of G
is a key condition for recovering A from B*, and the following proposition further

explores implications of this condition.

Proposition 2. Suppose that G has full column rank and let GT = (G" G)~' G". Define
B:=GAG'", w:=GCw,.

Then the following statements hold:

(i) {y,} admits VAR(1) representation
yi= §Yt—1 +uy,

where {w;} is i.i.d. with E[u,] = 0 and v, is independent of the past y'~'. Moreover, a;

in (2) satisfies a; = uy, and B* in (5) satisfies
By, 1= B Yi-1 a.5.
(ii) If in addition 3, := Cov(x;) > 0, then
B*=B=GAG', A=G"'B*G.

Proof. See Appendix A.1.2. O

Proposition 2 highlights what can be inferred about A from the lag-1 linear pro-

jection coefficient once the measurement map is injective. When G has full column



rank and X, > 0 (so that B* = G A G by Proposition 2(ii)), the same algebra with
any symmetric positive definite N, x IV, matrix S in place of X, shows that we can

equivalently write

B"=GASG'(GSG")™ . 7)

Moreover, Corollary 1 below shows that under C C' » 0, the Kalman gain and state

transition matrix satisfy A = K G.

Corollary 1. Suppose that G has full column rank. If in addition C C' = 0, then the Riccati
equation (4) reduces to

Yo =CC' =0, 8)
and the corresponding Kalman gain satisfies A = K G.
Proof. See Appendix A.1.3. O
If in addition CC' = 0, Corollary 1 implies that ¥, = C C" = 0, so we can
choose S = X, and write (7) as
B*=GAX, . G'(Gx=,.G"". )
Comparing (9) with the Kalman-gain formula (3), we obtain

B*=GK.

To summarize:

(i) Under full column rank G, Proposition 2(i) gives a VAR(1) with innovations
u; = G Cw; orthogonal to the full past, and the first-order coefficient is uniquely
represented by the Moore-Penrose choice B* in (5).

(i) Under full column rank G and ¥, > 0, Proposition 2(ii) yields B* = G A G* and

A = GT B*G. In particular, the nonzero eigenvalues of B* equal the eigenvalues



of A (with additional zeros when M > N,).
(iii) Under full column rank G and CC' = 0, Corollary 1 yields A = K G and
Yo =CC', and B* = GK.

2.1 DMD as Estimator of Reduced-Rank First-Order VAR

In this section, we show how Dynamic Mode Decomposition (DMD) provides a com-
putationally efficient rank-/V estimator B of B* from data matrices. When G has full
column rank and 3, > 0, Proposition 2(ii) implies that the nonzero eigenvalues of
B* equal those of A and A = G B*G if G is known, so replacing B* by B yields
an estimator of A. If G is unknown, DMD estimates a low-dimensional invariant
subspace of B* encoded by its dynamic modes.

We estimate the lag-1 projection coefficient B* in (6) using a data set organized
as follows. Let y, denote an M x 1 vector of demeaned random variables for ¢t =
1,...,T+ 1, and assume M > T, so there are more variables than time periods. Stack

the y, across time to create two M x T data matrices Y and Y":

YZ[YlaY27"'aYT]7 (10)

Y = [YZayB""aYTJrl]' (11)

Thus, we have MT data points from which we want to estimate M/? parameters in an
M x M coefficient matrix. When M2 > MT, least squares is underdetermined. Hence,
we impose a rank constraint on the estimator. Fix a target reduced rank N < min{M, T'}.

We target the rank-constrained least-squares problem

B= argmin | Y —-BY |3. (12)
rank(B)<N

3Hirsh et al. (2020) show that centering the data is equivalent to incorporating an affine term in the dynamic model
and improves the performance of DMD in correctly extracting the dynamics of the data.



Assume the smallest singular value o > 0 so the reduced SVD below exists. Compute

the reduced SVD of Y with U € RM*N 3 = diag(o1,...,0Nn) € RY*N and V €

RTXN.

Y~UXV', (13)

which is the best rank-/N approximation of Y in the Frobenius norm by the Eckart-
Young-Mirsky theorem (Golub and Van Loan, 2013, Theorem 2.4.8). Define the rank-N
approximation Yy := U X V. The solution to the rank-constrained problem (12) can
be written using the Moore-Penrose pseudoinverse of Y .

With (13), the Moore-Penrose pseudoinverse of the rank-V truncation Y  is
Y, =VXE'U', sothat Y Yy=VV',

since Yy = UZV ' and U' U =Iyimply YL, Yy = VEIUTUSV = VV',

We use this to form the least-squares estimator on the rank-/N subspace:
B=YY,=YVx1lU'.

Define the reduced operator

A=U"YVEZ

with eigendecomposition AW =W A, and set
d=YVIZ'WwW.

The columns of ® are the DMD dynamic modes. The following proposition summarizes

key properties of B and ®.

Proposition 3. Let U, X, V beas in (13) and let Pg := ®® denote the orthogonal projection

onto the column space of ®. Then the following hold:
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(i) B® = ®A
(i) BPg = BAD™.
Proof. See Appendix A.1.4. O

Given B, define residuals &, := Vi -B yi_q fort =2,...,T + 1 and the sample
covariance = T~ St a4, . These residuals satisfy the sample first-order normal
equations (Proposition 4) and are therefore pseudo-innovations for the fitted VAR(1),
not necessarily innovations for the data-generating process. Proposition 3 states that
on the rank-N fitted subspace, BPs = PAD.

Proposition 1 implies that the population lag-1 projection coefficient satisfies B* =
GA GEI, with range(B*) C range(G) and all eigenvectors of B* associated with
nonzero eigenvalues lying in range(G). Proposition 3 shows that DMD produces a
rank-N estimator B whose spectral information is encoded in its dynamic modes
® and eigenvalues A. Under standard eigen-gap conditions, the column space of
® estimates an invariant subspace of B* and the corresponding eigenvalues in A
estimate the associated nonzero eigenvalues of B*.* When G has full column rank
and X, > 0, these nonzero eigenvalues equal the eigenvalues of the underlying
state transition matrix A (Proposition 2(ii)). When G is rank-deficient, A should be
interpreted as describing the eigenvalues of the observed lag-1 projection operator B*.
These eigenvalues coincide with a subset of eigenvalues of A only under additional
structure (e.g., when the G-visible state subspace is invariant under A).

Algorithm 1 summarizes the exact DMD procedure for estimating the reduced-rank
VAR operator B, DMD modes ®, and eigenvalues A from an M x (T + 1) data matrix
Y.

“Eigenvector convergence typically requires well-separated eigenvalues. When two eigenvalues are close or
repeated, the corresponding eigenspaces converge but individual eigenvectors within those spaces may not be uniquely
identified.
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Algorithm 1 Exact DMD for reduced-rank VAR estimation (Tu et al., 2014)

Input: Data matrix Y € RM*(T+1) rank N
1. Demeanrows: Y =Y —y1T where y = el STilty,
2. Form snapshot matrices:
Y = [?p---a?T]a Y = [§27---7§T+1]
3. Compute truncated SVD of Y:
Y~UEV'
where U € RM*XN 31 ¢ RVXN v ¢ RTXN

4. Compute reduced-rank VAR operator:

B=Y VU’
5. Project to reduced space and compute eigendecomposition:

A=UTY VISl AW=WA

6. Compute DMD modes:

=Y VI 'W

Output: ]§, b, A
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2.2 Ramifications

Define the rank-N DMD operator B := ®ADT. By Proposition 3, BPs = B. From
now on we work with ]§, which has the same action as B on the rank-N subspace

spanned by the DMD modes.

Proposition 4. Define the modal coordinates X; := ®% y,.> Then the reduced-rank VAR has

the linear state-space representation

Xy = AX_1 + ®Ta,
(14)
v = PAX; 1 + Ay,

with YT a, y, | =0and @ =T " a3
Proof. From B = ®A®+, we havey, = ®A®*ty, | +a;. Premultiplying by & yields
(14). O

The dynamic modes x; in Proposition 4 evidently have a moving average represen-

tation
j—1

Xipj = NX +> A®Ta, (15)
s=0

Under serially uncorrelated residuals {a;} with covariance Q, the j -step-ahead condi-

tional covariances of the modes are
B [y — Bl | %) (Res — Bl | %) | = Do A'@ (@) (A7) (16)

When A is complex-valued, -7 denotes the conjugate transpose. See Appendix B.1 for

more details.

5When @ has full column rank, X¢ gives the coordinates of P& y, in the mode basis. When ® is rank-deficient, X;
is the minimum-norm least-squares coefficient of y, regressed on the columns of ®.
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Collectively, Propositions 1-4 establish how DMD estimates a reduced-rank VAR(1)
representation of the observable process {y;} and how the fitted reduced-rank VAR(1)
can be expressed in terms of dynamic modes ® and eigenvalues A. When G has full
column rank and the truncation rank is chosen as N = N,, the fitted realization can
be related to the state dynamics up to a similarity transformation: in population, the
nonzero eigenvalues in A match the eigenvalues of A (Proposition 2(ii)), and under
standard eigen-gap conditions the column space of ® estimates the column space of G.
When G is rank-deficient, Proposition 4 still yields a valid state-space representation
for the reduced-rank VAR in {y,}, but A and ® should be interpreted as describing
the most salient observable dynamics and do not in general identify the structural

transition matrix A (Proposition 1).

2.3 Two Innovations Representations

Section 2.1 described how to use DMD to estimate a reduced-rank first-order vector
autoregression and then to use it to cast representation (14) in terms of dynamic modes
X:. In this section, we rewrite system (14) in a one-step-ahead form that resembles an
innovations representation for the fitted reduced-rank VAR(1). Define the one-step-

ahead predictor in modal coordinates by

Xpi=AX = A®y, . (17)

Here X; is defined from the fitted VAR(1) and should not be confused with the Kalman
predictor X; in (2). From (17), X; = AX;—; and, by shifting the index, X;y1 = AX;.
Substituting X; = AX;_; into the measurement equation, i.e., the second equation of
(14), gives us
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Because a; is the least-squares residual from regressing y, on y,_; (equivalently, on
®AX, 1), it satisfies the sample normal equations 3/ ' @,y ; = 0. Now time-shift

the first equation of system (14) forward to obtain
Xi41 = AX + D a4,
then multiply both sides by A to get
AXpp1 = A%+ AP,
Using X2 = AX;11 and X¢41 = AXy, this becomes
Xip2 = AXpp1 + ATy,

Shifting indices back by one yields our pseudo innovations representation

it.}rl = Ait + A<I>+?a\t,
(18)

y: = ®X; +ay.

Equation (18) gives a one-step-ahead (pseudo-innovations) state-space realization
of the fitted rank-N VAR(1): it reproduces the fitted linear predictor B Vi1 = Pxy
and the associated residuals a; := y, —B y,_, from the reduced-rank coefficient B =
®AP". This construction parallels the steady-state innovations representation (2) of
the baseline state-space model (1), in which (A, G, K) and innovations a; generate the
one-step-ahead predictor and update.

The difference is informational: a; are defined by the least-squares projection used to
fit the VAR, so they impose only the sample orthogonality conditions 3 ' @,y ; = 0
(and, in population, E[a; y,/ ;] = 0), whereas the innovations a; in (2) satisfy a; | y'~L.

When the data-generating process is VAR(1) with white innovations (for example,

15



under the injective-measurement case of Proposition 2(i)), these notions coincide and
(18) becomes an innovations representation. This discussion preludes the information-
projection interpretation of DMD in Section 3.

Motivated by this analogy, a realization of the fitted VAR(1) is obtained by setting

A=A K:=Ad" G =9o. (19)

3 Approximating Versus Underlying Structural Model

In the spirit of Koopmans (1947) and Sargent and Sims (1977), we regard the model
in Section 2 as a Kepler-stage descriptive model whose role is to detect and organize
data patterns that a Newton-stage structural model should be designed to interpret
and explain. Lucas (1987) and other leading 20th-century macroeconomists viewed
descriptive findings like those of Burns and Mitchell (1946) as providing empirical
underpinnings for a “neo-classical synthesis” that separates macroeconomic from mi-
croeconomic analysis of redistribution and social insurance.® That descriptive statistical
work indicates that the evolution of the macroeconomic quantities reported in National
Income and Product Accounts emerged from the operation of some type of “homog-
enizing mechanism” that aggregates a myriad of microeconomic shocks into one or
two macroeconomic “factors” and shocks.” According to Koopmans (1947) and Lucas
(1987), the role of structural macroeconomic theory is to interpret and explain these
regularities.

In this section, we formulate a particular homogenizing mechanism, namely a
competitive equilibrium in the complete-markets tradition of Arrow—Debreu. We use
it to generate a vector stochastic process for a cross-section of households” income

and consumption, and then use the statistical model in Section 2 to describe the

6See Sargent (2015, 2024).
"Milton Friedman suggested the term “homogenizing mechanism” to Sargent in personal conversations in 1976.
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simulated data. In this way, we learn how DMD-recovered parameters depend on the
parameters of the underlying structural model. In Sargent et al. (2025), we use our
Section 2 model to study the dynamics of CEX cross-sections of US personal income
and consumption, so here we take an off-the-shelf Arrow—-Debreu model, namely,
a member of a class of readily computable linear-quadratic structures presented by
Hansen and Sargent (2013). Thus, in the spirit of White (1982) and Hansen and Sargent
(1993), our purpose is to study properties of our Section 2 descriptive model as a
presumably misspecified approximation to a particular structural model. We do this
by constructing an “information projection” of the structural model onto the DMD
model.®

In Sargent et al. (2025), we detected evidence of substantial redistribution and insur-
ance in US CEX data from 1990 to 2023. The structural model presented in this section
delivers such outcomes. It is a linear-quadratic DSGE economy with heterogeneous
households whose preferences satisfy Gorman aggregation conditions (Hansen and Sar-
gent, 2013, ch. 12). Hence, competitive equilibrium prices and aggregate quantities can
be computed without tracking the cross-sectional wealth distribution and household-
level consumption allocations respond to aggregate dynamics through time-invariant
Gorman weights.

In our structural model, two “homogenizing mechanisms”” are active, one exoge-
nous, the other endogenous. We build in the exogenous part of the mechanism when
we specify that households” exogenous stochastic consumption endowments, i.e., their
“Lucas trees”, share a common dynamic factor.” The endogenous part comes from the
extensive risk-sharing that competitive and complete markets deliver. As we shall
see, it is easy for us to simulate efficient redistributions by simply tilting the vector of

Pareto weights that emerge from an initial competitive equilibrium allocation. We take

8See footnote 13 below for an explanation of “information projection”. See Sargent (1976) for an early application.
9Eberly and Wang (2025) provide the canonical “two-tree” model that extends the classic one-tree model of Lucas
(1978). Our Hansen and Sargent (2013, ch. 12) model has as many trees as households.
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advantage of that feature to generate outcomes that resemble ones uncovered by our
statistical analysis with the CEX data in Sargent et al. (2025), as exhibited by comparing
Figure 3 below with Figure 3 in Sargent et al. (2025). Among other things, we also study
how well, when applied to a high-dimensional household panel, DMD recovers low-
dimensional aggregate dynamics that drive household incomes and consumptions in
the DSGE model that actually generates the data in our system of artificial households

and traders.

3.1 Gorman Aggregation Environment

Time is discrete, t € {0,1,2,...}. There are J households, indexed by j, who share
a common discount factor 8 € (0,1) and information set, but differ in preferences
and endowments. Households consume a single final good and supply a single
intermediate input, which for convenience we sometimes call “labor”. Household j

chooses {c;i, {ji }+>0 to maximize
1 [e.e]
—21@0;& (50 = b30) (0 = bje) + Gt (20)
subject to a household service technology

sjt = Nshji—1 + scjt,

hjs = Aphji—1 + Opcji,
and an Arrow-Debreu time-0 intertemporal budget constraint

o0 oo
Eo Z B'pot - cjt = Eo Z Bt (worlje + aor - djt) + vo - kj 1,
t=0 t=0

Here c;; is consumption, ¢;; is labor supply, hj; is a household durable stock, and

sj; is the associated service flow. py; is the price of consumption, wy; is the price of the
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intermediate input, a; is the price vector of endowment goods, and vy is the price of
the initial capital stock k; ;. Bliss points b;; = Ug z; and endowments dj; = Ufl z; are

linear in an exogenous state vector z; € R"* that follows
Zir1 = Aoz + Cowipr, Wiy ~N(0,I). (21)

Heterogeneity enters only through the loadings (U{;, Ufl) and initial stocks (h; 1, kj —1);
the technology parameters (A, IL;, Ay, ©) are common across households. This struc-
ture implies individual demands are affine in wealth with common marginal propensi-

ties, a necessary condition for Gorman aggregation (Gorman, 1953).

3.2 Aggregate Dynamics and the Sharing Rule

Competitive equilibrium allocations are Pareto efficient and can be computed from a
representative-agent planning problem. Define aggregates ¢, := 3, cji, by := >, hyu,
k‘t = Z] ]{?]’t, and let Ub = Z] Ui, Ud = Z] U‘Zi so that bt = Ub Zy and dt = Ud Zi. The

planner maximizes
1 o0
—5 B0 8" (st = b)) (st = b) + 9/ gt (22)
t=0
subject to

Veer + Wogr + Wity = Thi—1 +dy, ke = Apki—1 + Oy,

hi = Aphi—1 4+ Oper,  s¢ = Aghy—1 + Tlgcq.

In (22), g, is an aggregate intermediate good and i, is investment. Let x); denote house-
hold j’s time-zero marginal utility of wealth and define the Pareto weight associated

with the competitive equilibrium for an economy with initial stocks (k; _1, hj—1) and

19



exogenous endowments {d;} across agents j as

w
Hoj

W= =g (23)
2 i=1 Moy
The consumption allocation rule takes the form
Cjt = pict + Xijt, (24)

where p1¢; is household j’s proportional share of aggregate consumption and x;; is a
deviation term determined by preference heterogeneity. The deviations sum to zero:
>~ Xjt = 0. The weight p1; depends only on time-0 conditions and is time-invariant.
Holding aggregate endowments and initial aggregate stocks fixed, if we assume a
new set of Pareto weights that sum to 1, then (24) describes the new allocation while
leaving aggregate dynamics unchanged. In this way, we can describe the outcomes
of a Pareto-efficient redistribution scheme while leaving open details about the exact
redistributions. There is an equivalence class of distributions of initial capital stocks
and endowments that validate a given set of Pareto weights. We therefore model
redistribution by directly perturbing the Pareto weights.

For a special case of our model in which preference shocks are shut down, an
Arrow-Debreu complete-markets allocation can be implemented with a limited set
of markets: a mutual fund holding all endowment claims and a one-period riskless
bond. When the riskless return is constant and the deviation baseline {x;} is known
at time 0, all households hold the same portfolio of risky assets (the mutual fund), and
dynamic rebalancing occurs solely through the bond market. This trading structure
implements an efficient allocation and extends a two-fund theorem of Rubinstein (1974)

to a multiperiod setting.'”

10Sargent and Stachurski (2025) provides a more detailed discussion of the model in their lecture.
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3.3 A 100-Household Example

We now construct a large-panel experiment in which DMD is applied to a high-

dimensional cross-section of household outcomes generated by the Gorman economy.

Set J = 100 and define vectors 1, := (17,41, - --,7.7+)" as the idiosyncratic endowment
states for j > J, and & := (14, ...,&) as the preference-shock states. The exogenous
state is o
1
da,t
Zy —
™
L&

The aggregate component follows the AR(1) process
dot+1 = p1dat + Oa€at+1, (p1,04) = (0.95,0.5).

where g,:41 ~ N(0,1) is the aggregate innovation (a component of w;;; in (21)).
We set J, = 50 and construct endowments so that idiosyncratic shocks cancel in the

aggregate:

djt:aj+¢jda,t+77j,t7 j:Ja+17"'7‘]7

J
djt = aj + dpjdas — Ji S ks F=1..Ja
@ k=Jo+1

In this setting, ijl dj: depends on {d,;} but not on {7;.} once we normalize
ijl ¢; = 1. We draw a; ~ U[3,5] and ¢; ~ U[0.5,1.5], then set ; = ¢;/ 37| bi. To
generate an economy where low-income households experience more idiosyncratic
risk, we define p; as one minus the percentile rank of «; in the cross-section and set,
for j > J,,

0; =02+ (5.0-0.2)p, p? = 0.0+ (0.90 — 0.0) p;,
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in the AR(1) process 7;+11 = p4n;+ + 0j€%,,,. The innovations {e4, |} are ii.d. N(0,1)
across j and ¢ and are components of w; ;. Preference shocks are muted in this
experiment by setting the innovation loadings on §;; to zero. We interpret changes in
Pareto weights as an incompletely described, Pareto-efficient tax-and-transfer scheme
that redistributes resources across households without changing aggregate dynamics.
To implement redistribution, we compute an alternative Pareto-efficient allocation that
replaces the competitive equilibrium weights {u;} with redistributed weights {4} }
defined by

w; =1 —a)u;+a/J, a=0.28,

so that ijl p; = 1. As mentioned above, there is an equivalence class of efficient
tax-and-transfer systems that imply these Pareto weights.

We simulate the economy for 2,000 periods and discard the first 200 as burn-in.
Figure 1 plots simulated household consumption and post-trade dividend-income
panels, and Figure 2 summarizes the redistribution in Pareto weights. Under the
sharing rule (24), the aggregate component of consumption is /¢, the source of strong
comovements across households (Figure 1).

Figure 2 shows that the reduced-form redistribution tilts weights away from those
implied by initial marginal utilities of wealth toward a more uniform assignment.
Because Gorman aggregation pins down the aggregate allocation independently of the
Pareto weights, this redistribution operates only through the sharing rule: it reshuffles
the cross-sectional allocation while leaving the aggregate dynamics (¢, k) unchanged.

To visualize and model the tax-and-transfer mechanism in the economy, we define
the household income process and study how redistribution affects household income
and consumption. Let y;;(w) be household j’s net income for a given Pareto-weight

vector w, and define household j’s net income at time ¢ as

yjt(w) = Wjdt + (R — 1)wj,t_1, (25)
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Figure 1: Household consumption and post-trade dividend-income paths in the 100-

household economy (after burn-in). Each line corresponds to a household.

where d; is the aggregate endowment, R = 1/f is the gross return, and w;;—1 =
wiki—1 + kj,—1 is household j’s total asset comprising a proportional capital share
wjki—1 and a bond position ];'j,t_l. The first term is dividend income from holding w;
shares of the aggregate endowment; the second term is the net return on wealth. Let
Y5 = yji(p) denote household j’s net income under the competitive equilibrium
weight vector {u;}, let y%7 *' .= y;(u*) denote net income under the redistributed
weights {7}, and let ¢!} *" denote post-redistribution consumption.

The effect of redistribution on household income and consumption is clearly visible
in Figure 3, which plots cross-sectional percentiles of pre- and post-redistribution

income and post-redistribution consumption.
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Figure 2: Pareto weights in the 100-household economy. The left panel plots the

Gorman weights {y;} and redistributed weights {y} after sorting households by ;.
The right panel plots i — u;.
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Figure 3: Cross-sectional percentiles (p10, p50, p90) of pre-redistribution income yftr 5

post

post-redistribution income y%;*", and post-redistribution consumption ¢%; *" in the 100-

household experiment (after burn-in).
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3.4 Ground Truth State-Space Representation

A solution to the planner’s problem yields equilibrium prices and allocations as linear
functions of the aggregate state. This provides a ground-truth state-space representa-

tion for the high-dimensional household panel. The aggregate state vector is

hi—1
Xt = kt_l 3

Zy

where h;_ is the aggregate household durable stock, k:—; is the aggregate capital stock.

The equilibrium law of motion for the state evolves according to

xt41 = Ao xt + Co Wiy, w1 ~N(0,1). (26)

Any equilibrium quantity is a linear function of the state. Stacking aggregate consump-
tion, government spending, investment, household durables, capital, endowments,

bliss points, and services gives a measurement equation

Ct

gt

1t

i = = Goxt, (27)

St

where G, stacks the pertinent selection vectors.
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Suppose an econometrician observes only household-level income and consump-
tion data, without direct knowledge of the underlying state x; or the structural param-
eters governing its evolution. That is, (26) is out of reach. The econometrician observes
a high-dimensional panel that stacks households’ pre- and post-redistribution incomes

and post-redistribution consumptions as

pre
Y1t

pre

Yt

post
1t

yobie=| | eRM, M =3J

post
Y

0st
cly

0st
[ ]

. pre . pre pre\T post | post post\T post |
Define the J-vectors y; * := (yy; ..., ¥y ) ,¥Y: =W »---»¥y ) ,andc; =

(e T so that ySL = [y?"; yb°; cb°]. Since (as verified below) each compo-
nent of y$L is well approximated as a linear function of the state, the household panel
is well approximated by a state-space representation of the form

Xi+1 = Ao x4 + Co Wiy 1,
(28)

GL GL
Yt = G Xt,

which is a special case of (1) with (A, C, G) = (A,, C,, G°L). The measurement matrix
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GEL has the block structure

Gy,pre
GL GL M X Ng
GOl — | gupost GOl ¢ RM* N

Gc,post

where N, = 154 is the dimension of x;.'! and GYP GYPost GEPOSt ¢ RNz map
x; to y?™¢, y?°*, and %, respectively. To write GCL in closed form, we express each
observable as a linear function of the aggregate state x;.

For income, combining (25) with the asset decomposition w;;—1 = wjki—1 + /%j’t_l
gives

yjt(w) = wjdt + (R — 1)0.2]'/{71571 + (R — 1)]{33"1571, (29)

where the first two terms depend only on aggregates, but the third term involves house-
hold j’s idiosyncratic bond position kj; ;. In the limited-markets implementation
of the complete-markets allocation, the bond position is driven by the sharing-rule

deviation through the law of motion
kje = Rkji1 — Xit, (30)

where x; is the deviation term from the sharing rule (24). The initial bond position is

pinned down by the present value of future deviations:
];‘j(] = Zﬁsféjs- (31)
s=1

In general, writing y;; as a static function of x; alone requires augmenting the state

with {l%j,t,l } 3]:1. However, when preference shocks are muted so that x; is negligible,

1 The 154 states consist of he—1, kt—1, da,t, da,t—1, Mt € R7~7a with J — J, = 50, and & € R100,
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equations (30)—(31) imply ]%jt ~ 0 for all j and ¢, and income is well approximated by
yjt(w) W Sgx: +(R — l)wj S X4, (32)

where S; and S, are selection vectors such that d; = S;x; and k;—1 = Sj, x;. This yields
the income row G ~ w;Sq+(R—1)w;Sy, with G¥ € {G¥P™, GYP**'} and w; € {p;, 115}
correspondingly.

The sharing rule (24) implies
Cjt = Mjict + Xjt, (33)

where the deviation yj; captures preference heterogeneity. Under the canonical house-
hold technology, ¥, is driven by the deviation bliss point bj; := bj; — p;b;. In our

calibration with A; = 0, the inverse representation simplifies to
Xt = 10, bjs, bt = U} 2y —pu;by, (34)

where 11, is the service—consumption loading in the household technology and b; =

Sy x; is the aggregate bliss point. Substituting yields
G§ = 11;S. + 11,1 (U7 S. — 11;8y), (35)

where S. and S, select aggregate consumption and the exogenous block from x;,
respectively. For post-redistribution consumption, replace p; with x7 in (35), ie.
,post - ]
G;’f post — w;Se + 11 uls. — 17Sb)-
In our numerical experiments, we mute the idiosyncratic preference shocks by

setting their innovation variances to zero. This has two consequences. First, the

consumption deviation y;; in (34) becomes nearly deterministic. Second, the bond
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dynamics (30)—(31) nearly collapse: when x;; =~ 0, the initial condition (31) gives
l;:jo ~ 0, and the law of motion (30) implies l%jt ~ 0 for all ¢. Therefore, the idiosyncratic
term (R — 1)k;;_1 becomes negligible in (29), and approximation (32) is accurate.

Moreover, we work with a T' = 250 subsample of the post-burn-in data. Here,
M =300 and T = 250, so M > T.'> The household panel {y$"}7_; is our input to
the DMD procedure of Section 2.1 to estimate a reduced-rank VAR operator B and
its eigendecomposition. In our laboratory, we generate aggregates from the linear
state-space system (26)—(27), but the econometrician observes only microdata at the
household level {y$'}T . We assess DMD'’s performance through diagnostics that
compare estimated objects to their ground-truth counterparts. We proceed from rank
selection to spectral and state recovery, then turn to cross-sectional loadings and
forecasting.

Before examining empirical results, it is useful to record the population object that
DMD targets. Since our DMD implementation is applied to demeaned snapshots, we
work with the centered panel y, := ySt —y, where y is the sample mean of {y&t}7,.
The centered panel y, admits a state-space representation that parallels (1)—(2). Let
(A, C, G) denote the state transition, shock loading, and measurement matrices of the

centered state-space system (i.e., with the constant state component removed from

(A,, C,, GEL)). The centered state-space representation is

xi+1 = Ax + Cwyyg,
(36)

yt = GXt,

12We simulate 2,000 periods, discard the first 200 periods as burn-in, and extract a 250-period subsample for DMD
analysis.
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where w1 ~ N(0,I). The associated steady-state innovations representation is

Xi+1 = Ax + KgL ay,
(37)
Yt = Gﬁt + ay,

where X; := E[x; | y'~!] is the one-step-ahead state prediction, a; := y, — G %; is the

innovation, and the steady-state Kalman gain is
K, =AY G (GZ, . GN)*, (38)

with X, = E[(x; —%;)(x; —%X;) '] denoting the steady-state prediction error covariance.

To derive the vector autoregressive representation, iterate (37) forward. From the
first equation, X; = A X;—1 + Kgr a;—1. Substituting into the second equation of (37)
gives

V= GAﬁt_l + GKGL a1 +ag. (39)

From the second equation of (37) at ¢t — 1, we have GX;—1 = y,_; —a;—1. Repeated

substitution yields

yi=Y GA-Ka G 'Kary, j+ar. (40)
j=1
Define the VAR coefficient matrices
B;:=GA-Kg G/ 'Kg, j>1 (41)

Then the infinite-order VAR representation becomes

Y= Bjy.;+ta. (42)
j=1
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This is a vector autoregressive representation for the centered household panel {y, }.
Let ¥, := Cov(x;) denote the stationary covariance of the centered state. The

population VAR(1) coefficient is the linear projection of y, on y,_;:
* + T "
B* := Cov(y,y, 1) Cov(y;,)* = GAS, G (G >, G ) . (43)

When B* has (effective) rank at most IV, a rank-N DMD estimator targets B*. We now
examine the eigenvalue structure of B* and {B,} to assess the suitability of a low-rank
approximation.

Top 10 Eigenvalue Magnitudes Spectral Radius and Norm of B; across Lags

144 —e— Spectral radius p(B;)

Frobenius norm || Bj|| p

0.84

0.6

0.4+

0.24

0.0 .\;»---...Q ------- *—— & Tremeen {mmmmmee Dpmmmmen 0

i I Eigénvalucémk 78 9 10 i x5 4 éLagjé 708 9 10
Figure 4: Eigenvalue structure of population VAR coefficient matrices. Left: Eigenvalue
magnitudes for the population VAR(1) coefficient B* and the first three infinite-order
VAR coefficients By, Bo, B3. Right: Spectral radius and Frobenius norm of B; across

lags.

Figure 4 provides evidence that the population first-order VAR coefficient B*
and the infinite-order VAR coefficients {B,} are both effectively low-rank. The left
panel plots the eigenvalue magnitudes of B* and the first three infinite-order VAR

coefficients By, B2, B3 from (42). For each matrix, the top two eigenvalues dominate,
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with magnitudes around 107! to 1, while all other eigenvalues are numerically 0.

The nearly rank-2 structure of the VAR coefficient matrices is inherited from the
economic structure of our DSGE model. Under the sharing rule (24), household
consumption ¢;; = p;c; + X+ is dominated by the aggregate component 1i;¢;, which
under the planner’s linear decision rule is itself a linear function of (k;_1, d, ¢). Similarly,
from the income definition (25), household income y;; = w;d; + (R — 1)w;+—1 depends
on aggregate endowment d; (a linear function of d, ;) and wealth w;;_;, which loads
on aggregate capital k;_;. Although the full state vector x; contains idiosyncratic
endowment states {7;;} with dimension J — J,, these components are constructed
to cancel in the aggregate (Section 3.3) and do not contribute additional predictive
directions for the centered panel. Hence, the M-dimensional observable vector y,
lies in a two-dimensional affine subspace spanned by loadings on (k;—1, dq ), and the
population VAR coefficients inherit this low-rank structure.

The right panel of Figure 4 shows the spectral radius p(B;) and Frobenius norm
| Bj ||F across lags j = 1,...,10. Both decay rapidly: the spectral radius falls from
near unity at lag 1 to below 0.1 by lag 2, reflecting the geometric decay rate governed
by eigenvalues of the closed-loop observer A — Kgr G. This decay implies that even
though the true representation (42) is an infinite-order VAR, most predictive infor-
mation concentrates in the first lag, making a VAR(1) a promising approximation.
Heuristically, these results justify using a small N in DMD: when the spectrum of B*
is dominated by a few eigenvalues, a low-rank approximation captures most of the
predictive content.

By viewing our estimated DMD model as an “information projection” of our
structural model onto the DMD family, we can analyze properties of our descriptive

Section 2 model as an approximation to our structural DSGE.!® Let 6 denote the

13Csiszar and Matus (2003) and Nielsen (2018) describe information projections. Let { fo(2)}gco and {gs(z)}sea
be two collections (manifolds) of probability distributions for outcomes x € X. When model g5, (x) governs the data,
a population maximum likelihood estimator 6, of parameter vector § € © of misspecified statistical model fy(z)
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parameters of our DMD model and let § denote the parameters of our structural DSGE
model. When the structural model with parameter J,, generates the data, information
projection selects the KL-minimizing DMD parameter §,. By studying the mapping
do — 0,, we can learn how the parameters of the approximating descriptive model
reflect the parameters of the structural model. In the remainder of this section, we
describe aspects of this information projection in our setting.

Footnote 13 specializes in our setting to a conditional KL projection. We approxi-
mate the true one-step-ahead conditional law of y, by a Gaussian VAR(1) conditional
family, and define the best-fitting VAR coefficient as the KL minimizer.

When Ty := Ely,_;y, ;] is singular, y, is supported on the subspace S :=
range(Tg) € RM. Let r := rank(T'y), choose R € RM*" with orthonormal columns
spanning S, and write y, := R'y, € R" (so y, = Ry, a.s.). Assume the con-
ditional law of §, given y'~! admits a Lebesgue density p;(- | y'~!) on R" with
E|logpi(y, | y©™1)| < oo. For B € R"™*" and © * 0, let 4, | ¥i-1) denote the
Gaussian VAR(1) density on R” corresponding to ¥; | ¥;_; ~ N (By,_;, Q). ™*

Define the expected conditional KL risk

tfl)

B.Q) — oo PEOIYT) N o1y e
D(B, Q) -—E[/Tl g<q]§7§(y | yt_l))pt(y |y )dY] : (44)

minimizes the Kullback-Leibler divergence

KL(gs, fo) = [ log (g]f;(f))) 08, (2)dz = —H(gs,) — Egy, log fo(a),

where H(gs,) = [log (ﬁ) 95, (x)dz is the Shannon information of nature’s probability distribution g5, ()
and Eg4, denotes mathematical expectation under g;, (). The information projection of g5, (x) onto { fg(z)}gco is
distribution fy_ () in manifold { fo(x)}sco that maximum likelihood selects when nature’s model gs_ generates the
data, i.e, 0, = argmaxycg Eq,, log fo(z) is the population maximum likelihood estimator of & when probability
distribution g5, generates the data.

4Defining densities on RM and projecting onto a full-rank Gaussian family yields KL divergence +oco when T’y is
singular, because the true conditional law is supported on S while a full-rank Gaussian does not share that support.
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By iterated expectations,

D(B, Q) = E[logpi(¥, | y'")] —E[logag 63+ | Te-1)], (45)

does not depend on (B,Q)

so minimizing D is equivalent to maximizing the expected Gaussian conditional log-

likelihood on the support. Expanding the Gaussian log-density gives

1 ~ 1 - ~ ~ ~ _
D(B,€2) = const +  logdet(2) + 5 E|(¥, - By, )'Q Yy, - By,_;)|. (46)
Fix © > 0. The minimizer B~ satisfies

E[(F,—B'y,1)y, 4] =0, (47)

hence B = I, fal where T, := E[Srtjf;r_k] and Ty = RTTyR = 0.

Mapping back to RM yields
B*:=RB R’ =TI, T,

so B* is the KL (information) projection of the true one-step-ahead conditional law on

its support onto the Gaussian VAR(1) family.

3.5 Application of DMD on Microdata from the Gorman Model

Up to this point, we have shown that B* is effectively low-rank and that rank-~N DMD
targets B*. The information projection perspective also makes precise the criterion
underlying this target: DMD selects the best-fitting low-rank VAR(1) approximation
to the panel’s true one-step-ahead conditional dynamics. In this section, we apply
DMD to the simulated household panel {y,}]_; and evaluate how well it recovers the

spectral, state, and cross-sectional properties of the underlying dynamics.
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Figure 5: Scree plot for the household panel. The sharp elbow after the second singular

value motivates N = 2.

We begin by selecting the DMD rank N. Figure 5 presents a scree plot of singular
values of the centered snapshot matrix Y constructed from {y,}. ; by stacking the
observations as columns. The sharp elbow after the second singular value suggests
that V = 2 is a natural choice, consistent with the economic structure of the model
(Section 3.3). We therefore set N = 2 in the DMD implementation below. With N fixed,
we first assess spectral recovery by comparing eigenvalues of the estimated DMD
operator B to those of the true system. Figure 6 overlays the top 20 eigenvalues of A,
the eigenvalues of the population VAR(1) coefficient B* in (43), the DMD eigenvalues,
and the aggregate endowment persistence p;. With N = 2, the DMD eigenvalues
closely match those of B*, confirming that DMD recovers the population VAR(1)
dynamics.

The theoretical connection between DMD modes and the centered measurement
matrix G can be verified numerically. This example illustrates the rank-deficient
measurement case described in Proposition 1 since the measurement matrix G has
rank 2 < N, as we discussed in Section 3.4. From (43), range(B*) C range(G). In
this experiment, the DMD modes & are nearly collinear with the leading eigenvectors

of B*. Computing the correlation between estimated DMD modes and the leading
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Figure 6: Spectral recovery

eigenvectors of B*, we find correlations of 0.97 for both modes, with principal angles
between subspaces of less than 0.05°. Projecting ® onto range(G) yields a relative
residual of about 107!, As shown in Figure 4, the centered panel has only two singular
values with magnitude larger than 1.0 x 1071°, so DMD recovers exactly two modes
corresponding to the most important aggregate state components.

Spectral recovery does not by itself imply that the associated low-dimensional
DMD state tracks the latent state. As we discussed in Section 3.4, we expect the leading
DMD modes to track the aggregate capital and endowment components of x; if DMD
recovers the low-dimensional dynamics from the household panel. Figure 7 examines
whether the estimated DMD mode coordinates track the aggregate state. Letx; = ® "y,
denote the DMD mode coordinates. For each mode, we compute its correlation with
every component of the true state x; and plot it against the state component with the
highest absolute correlation (both standardized as z-scores). Indeed, the first DMD
mode closely tracks aggregate capital, and the second tracks aggregate endowment
with very high correlation, confirming that DMD recovers the true low-dimensional
dynamics embedded in the high-dimensional panel.

Beyond time-series recovery, we can ask whether the estimated modes reproduce

the cross-sectional structure implied by the sharing rule. Figures 8 and 9 examine how
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Figure 7: DMD mode time series for the stacked panel y, compared with selected

components of the true aggregate state x;.

DMD mode loadings vary across households. The DMD modes matrix ® ¢ RM*¥
has rows corresponding to observables. Under the sharing rule (24), the component
of consumption driven by aggregate dynamics scales with p;, so households with
larger 11; should load more heavily on aggregate modes. Figure 8 confirms this by
plotting the magnitudes of DMD loadings for pre- and post-redistribution income
and for consumption against household wealth percentiles. Denote these loadings by
@;%Pre), (P;ZP"“), and @;2), respectively, where households are ordered by the magnitude
of their Gorman weights p;. Figure 8 shows that households with higher percentiles
have a larger loading on DMD modes of pre-redistribution income. Although the same
trend holds for post-redistribution income and consumption, the relationship is less
pronounced because redistribution attenuates inequality.

Figure 9 reinforces the idea that the loadings reflect the sharing rule. We extract
the consumption block () and plot |<I’§(,?| against household j’s Gorman weight
5, showing that the correlation between |¢>§Cl)| and p; is unity, indicating that DMD

loadings recover the cross-sectional sharing rule.
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Figure 8: DMD loadings by wealth percentile for the stacked panel y,. Households are

ordered by the Gorman weights {/:;} (ascending).
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Figure 9: In the 100-household experiment, DMD loadings in the consumption block

are proportional to the Gorman weights {1}, consistent with the sharing rule (24).
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To move beyond in-sample diagnostics, Figure 10 evaluates forecasting performance
using a train-test split with training fraction 0.7. We estimate DMD on the training
sample to obtain B and the training-sample mean ¥,.,;,. For each test observation y&t,

the k-step-ahead conditional-mean forecast is

~GL - sk GL -
Yt+k|t = Ytrain T B (Yt _Ytra'm)v (48)

which iterates the estimated VAR operator k steps forward. The figure plots the

GL

cross-sectional median of both realized values y’;,

and forecasts yﬂk‘t for horizons
k € {1,3,5}. Short-horizon predictions closely track the realized median dynamics,
while longer-horizon predictions revert toward unconditional means as the stable DMD

operator is iterated forward. The same pattern holds for all cross-sectional percentiles.

—— model DMD (1-step)  -—--- DMD (3-step) - DMD (5-step)

380 390 400 410 420 430 440 450
t

Figure 10: Out-of-sample DMD predictions in the 100-household experiment at hori-
zons k € {1,3,5}.

Finally, the Gorman laboratory provides an informative numerical example that
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verifies key theoretical results in Section 2, particularly the implications of the rank-2
structure of the measurement matrix G documented in Figure 4. When rank(G) < N,
the population VAR coefficient can be written as B* = G A G;z, where G;z is a
weighted pseudoinverse that depends on the state covariance 3. In this rank-deficient
case, the standard Moore-Penrose pseudoinverse G™ is not guaranteed to recover A
from B¥, but a minimal two-dimensional state representation using (k;—1,d,+) can
be constructed to recover A. Appendix B develops these results and verifies them

numerically.

4 Other Applications of PCA

Stock and Watson (2016, Sec. 2) describe how a principal-components representation of
the contemporaneous covariance matrix of a covariance-stationary vector stochastic
process is an essential component of what they call a “static” representation of a
“dynamic” factor model. That application of principal components differs substantially
from ours. To appreciate this, notice where singular value decompositions make
two appearances in our calculations.!> We use a reduced SVD'Y = U V' to form
submatrices U of U and V of V that appear in (13). This yields the rank-/N truncation
Yy := UX V', which we then use to form B=Y YE. We use U and V again when
we form the reduced operator A = UT BU e RV*N. At this point we compute an
eigendecomposition

A=WAW L

where columns of the N x N matrix W are eigenvectors of A and eigenvalues of A
appear on the diagonal of the diagonal matrix A.
By way of contrast, Stock and Watson describe how singular value decompositions

are applied to construct a “static” representation of a “dynamic” factor model by (i)

15Many modern procedures compute eigendecompositions by first computing a singular value decomposition. For
example, see Strang (2020).
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assuming that an observed process {y;} is covariance-stationary, (ii) estimating the
M x M covariance matrix Cy of y, (iii) using a singular value decomposition to compute
M principal components of Cy, then selecting the » most important components, then
(iv) adopting statistical detection procedures to infer ¢ < r “factors” in what Stock and
Watson call an associated “dynamic” factor model. In Sections 2-2.3, the object targeted
by DMD is the lag-1 linear projection coefficient B*. The rank-N DMD operator is a
low-rank estimator of this projector computed from snapshots.

A reader of Stock and Watson (2016) will recognize how our procedure instead
resides within a distinct tradition that connects LQG hidden Markov models and vector
autoregressions to infer parameters of the hidden Markov model, a tradition in which
a principal components analysis rarely makes an appearance. See especially Stock
and Watson (2016, Sec. 2). As Section 2.3 above indicates, the hidden Markov model
affiliated with our DMD procedure is a special case of the state-space models described
in Stock and Watson (2016, Sec. 2).

PCA estimators of factors and the associated loadings are identified only up to a
scale and rotation. Bai and Ng (2013) propose three sets of restrictions that imply exact
identification of the factors and loadings resulting from the PC estimator.

The first set of restrictions for PC requires that both the factors and loadings are
orthogonal. The second requires that the factors are orthogonal and that the top NV x N
block of G is lower triangular. The third leaves the factors unrestricted but requires
the top V x N block of G to be the identity matrix. In sum, identification for principal
components requires that either the factors are orthogonal, the loadings are orthogonal,
or the loadings have special structure implying that one or more observations are noisy
measurements of the factors.

DMD yields a modal state representation of the fitted reduced-rank VAR(1) on the
DMD subspace, with diagonal A. The associated residuals are pseudo-innovations

unless the data are generated from VAR(1) with innovations orthogonal to the full
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past (as in the injective-measurement case of Proposition 2). Accordingly, the nonzero
eigenvalues in A estimate eigenvalues of the lag-1 linear projection coefficient B*. They
coincide with eigenvalues of the structural transition matrix A only under full-column-
rank G (Proposition 2(ii)). Our framework does not require that the columns of G are
orthogonal, nor does it require that one or more observations are noisy measurements

of the factors. We summarize these comparisons in Table 1.

Identifying restrictions
Principal components DMD
© FYi %X =1y
PC Option 1 T . . . L
. G G is a diagonal matrix with distinct en-| o Fitted reduced-rank VAR(1) on
tries DMD subspace with
. % Zthl %% = Iy - A dlagonal (in modal
coordinates)
G, — C unrestricted
e G =
G, ¢ Eigenvalues of A estimate B*;
equal A eigenvalues under
PC Option 2 full-column-rank G
gn O -+ 0
g1 g -+ 0 )
e G = . . . A 5 &ii 7é 0,i =
gr1 82 - 8Brr
1,...,7
® X, unrestricted
PC Option 3
In
e G =

Table 1: Identifying restrictions for principal components and DMD

5 Concluding Remarks

This paper connects Dynamic Mode Decomposition to reduced-rank VARs and linear
state-space models, providing both theoretical foundations and empirical validation on
high-dimensional household panel data generated by a heterogeneous-agent economy.

Section 2 establishes the population theory. Proposition 1 shows that the lag-1 linear
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projection coefficient B* satisfies rank(B*) < rank(G), so that B* captures dynamics
on the support subspace of observables. Proposition 2 establishes conditions under
which the nonzero eigenvalues of B* coincide with those of the latent transition matrix
A: when G has full column rank and ¥, >~ 0, we have A = G B* G.. Propositions 3
and 4 characterize DMD as a rank-N estimator of B* and interpret the fitted residuals
as pseudo-innovations.

Section 3 applies DMD to a heterogeneous-agent economy with Gorman aggre-
gation, where the true aggregate dynamics are known. Using only household-level
income and consumption for 100 households, DMD with two modes recovers eigen-
values that closely match those of B* and align with the dominant eigenvalues of A.
The estimated mode time series correlate 0.91 and 0.96 with aggregate capital and
the endowment state, respectively, while loadings correlate with the Gorman weights
that govern redistribution perfectly. Section 3.4 provides an information-theoretic
interpretation: B* is the KL projection of the one-step-ahead conditional law onto a
Gaussian VAR(1) family.

Section 4 clarifies how DMD differs from principal components analysis in dynamic
factor models. While PCA targets static covariance structure, DMD exploits temporal
dependence to identify dynamic factors via a reduced-rank VAR, yielding different
identification restrictions.

The analysis also highlights limitations. When measurement is rank-deficient,
DMD recovers the dynamics visible in observables but cannot identify the full la-
tent transition matrix without additional restrictions. Nevertheless, DMD provides
a computationally efficient approach to extracting low-dimensional dynamics from
high-dimensional economic panels, and we expect it to prove useful in applications

ranging from household surveys to firm-level data.
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A Appendix

A.1 Proofs

A.1.1 Proposition 1

Proof. For (i), since y, = G x; and x; is stationary,
Cov(ytayt—l) = GAZ:E GT7 COV(yt_l) - sz GT .

Substituting into (5) yields B* =GAX,G' (GX,G')" = GAGy .
(ii) follows from B* = G(A ng), and if B'v = Av with A # 0 then v =
(1/A)B* v € range(QG). O

A.1.2 Proposition 2

Proof. Regarding (i), since G has full column rank, G" G = I, and therefore x; 1 =

G'y,_ ;. Using x; = Ax;_1 + Cw; gives
v, =Gx,=GAx_1+Cw;)=GAGTy, | +GCw; =By, ,+u.

Because {w;} is i.i.d. and independent of the past y'~1, the same holds for {u;}, so
u; L y"~!. Hence Ely, | y*'] = By,_, and a; = y, — E[y, | y*~'] = u;. This completes
the first part of (i).

Let Ty := Cov(y,_,) and T'; := Cov(y,,y;_). Orthogonality implies BTy = I";.'6
By definition B* = T',T{, so (B* —B)Ty = 0. Since y,_; € range(Ty) a.s., we have
(B*—B)y,_; = 0 a.s. and hence statement (i) follows.

For (ii), by Proposition 1(i), B* = GAX,G'(GX,G")*. If £, ~ 0 and G has

16This can be seen from the fact thatT'1 = E[y, y,_ ;] = E[(By,_; +ut) v l= BE[y,_, v/ J+Eury/ ] =
BT, + 0.
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full column rank, then

(G=,GN)*'=(G") = G,

soB*=GAX,G'(GHTE1GT = GAG"' = B Then A = Gt B* G follows
from GT G =1y,. O

A.1.3 Corollary 1

Proof. Fix any symmetric ¥ = 0 and let 3'/2 denote its symmetric square root. Define

Q := G V2. Since G has full column rank, G " is surjective, and therefore
range(Q ") = range(X'/2 GT) = range(X'/?).

Hence Q'(QQ")* Q is the orthogonal projector onto range(X'/2), so it acts as the

identity on range(3'/2). Hence,
»=32QT(QQNH) " Q="2=2 G (GEG")" G =
Applying this identity with ¥ = ¥ in (4) yields
Yo =AY AT+CC'-AZ G (GZ, ., GG AT =CC",

which proves (8). Under the additional assumption C CT = 0, we have ¥, = 0.
Letting Q := G Ecl,éz, Q has full column rank, so Q' (QQ")TQ = In,, which is
equivalent to

G (GZ GG =1y,.

Multiplying (3) on the right by G gives K G = A. O

7Because G T (GT)T = (GT Q)T =1y,.

45



A.14 Proposition 3

Proof. Recall that Y := UX V' denotes the rank-N truncated SVD of the snapshot

matrix. Assume oy > 0. Then
Y;=vzlu', B=YYL=YVElUu'.
Define the reduced operator and the DMD modes by
A=U'YVE! AW=WA, =Y VI 'W.
Then
B2=Y VI ' (U'YVEHW=Y VI '(AW)=Y' VI ' WA = ®A.

This proves statement (i).
When restricting Btoacton col(®), equivalently replace B by BPs. Using Y}, ® =
VEIUT®@=VEZ'AW=VE!1WA, wehave

BPg = PADT,
and hence B and ®A®™" coincide on col(®).' This completes the proof. O

B Minimal State Recovery in Gorman Application

Recall that with 3, = Cov(x;), the population VAR(1) coefficient in (43) can be written
as

B*=GAGY,, where Gf =%,G'(G=,G")" (49)

8Moreover, among all B with B ® = ®A, the unique minimizer of the Frobenius norm || B || r is ®A®*. This
follows from the KKT conditions for ming %H B |2 subject to B® = ®A.
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is the ¥ ,-weighted pseudoinverse of G. Equation (49) is simply a re-expression of
Proposition 1(i).

When G has full column rank and X, is positive definite, Proposition 2(ii) implies
that Gy = G' and hence B* = GAG™". When rank(G) < N, (1) is partially
observed and GJEFI need not equal G¥; in general, the simplification B* = GAG™
fails and A cannot be recovered from (B*, G) via A = GT B* G.

We verify these theoretical results numerically in the Gorman experiment. Table 2
compares B* to the projections GAG™ and G A G;z. In the full system with the
high-dimensional aggregate state, the centered state has dimension N, = 154 and
the measurement matrix satisfies rank(G) = 2 < N,, reflecting the rank-2 structure
discussed in Section 3.3 (see Figure 4). Consistent with Proposition 1, B* is matched
by G A G;z up to numerical precision, while G A G can deviate sharply when G is
rank-deficient.

Table 2: Comparison of population equalities and estimates in the Gorman experiment

Minimal state Full state
(kt—1,da) (154-dimensional)

State dimension N, 2 154
Numerical rank(G) 2 (full) 2 (deficient)
|B*~GAGT|p/|B||F 2.8 x 10714 31.4
IB*—GAGy |¢/|B*|r 18x107" 1.8 x 10714
IGTB*G-Alr/|AlFr 1.9 x 10714 0.982
IGtBG—A|r/|Allr 0.0294 0.989

To illustrate the full-column-rank case, we also construct a reduced (“minimal”)
state representation using only the two aggregate factors that drive the centered panel,
namely, aggregate capital k;_; and the aggregate endowment state d, ;. Let x"" :=
(k—1, da,lf,)T and write the centered panel as y; = Gmin xi“i“, where Guin € RM*? has
full column rank. In our experiment, (M, T) = (300, 250), so Gmin has shape 300 x 2
and the full data matrix [y, ..., y7 ] has shape 300 x 251. Since G, has full column
rank, Proposition 1 implies B* = Gmin Amin GT. and Anin = G B* Gpin.

min min
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The matrix Guin gm,min Glﬁn has two singular values above numerical precision
(approximately 1.19 x 10! and 1.26 x 1073), confirming that the minimal-state ob-
servables are effectively two-dimensional. Likewise, the demeaned snapshot ma-
trix Y = [y;,...,y7] has only two singular values above 1071° (approximately
14.63 and 1.51), with all remaining singular values at machine precision. Apply-
ing DMD to {y,} in this minimal-state representation yields IB = B*||p/||B*||r =
4.80 x 1073. The recovered transition matrix is accurate up to machine precision with
| G B* Gmin — Amin || F/|| Amin |[F = 1.9 x 10714 By contrast, a naive attempt to
recover the full high-dimensional transition matrix via A = G B* G produces large

errors in this experiment || GTB* G — A ||p/|| A || F ~ 0.982. Similarly, using the DMD

estimator B instead of B*, the minimal transition matrix estimate is given by

—~ + o 0.989 0.392
Anmin := G, BGnin =
—0.002 0.914
is close to the true minimal transition matrix
0.989 0.392
min -—
0.000 0.950

with relative error || G:;in B Gmin — Amin l7/|| Amin || = 0.0294, which is lower than

the relative error 0.989 for the full state. Table 2 summarizes these findings in this

particular application.
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B.1 Derivations for Section 2.1
B.1.1 Derivation of (15)

Iterate equation (14) forward:

it_;'_j = A§t+j_1 + (I)+at+j (50)
Xitj = A2)~(t+j_2 + A‘I’+at+j_1 + <I>+§t+j (51)
j—1
=NX+) Ada (52)
s=0

B.1.2 Derivation of (16)

The conditional expectation given X; is E[x;1; | X;] = AJ%;. Thus the conditional

covariance is

E [(Reey — ElRess | %)) (Res — Bl | %)) 53)
j—1 j—1
-k [( Z Asq>+§t+j_s) (Z Ariﬁﬁtﬂ‘—r)? (54)
s=0 r=0
j—1
=Y AetQ@t) (A7) (55)
s=0
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C Parameter Values for the 100-Household Example

Table 3 lists the parameter values used in the 100-household Gorman economy of
Section 3.3. Notation follows the main text. In particular, A, II;, A, and ©), appear
in the service equations following (20), while Ay, ©;, and I" appear in the planner’s

constraints following (22).

Table 3: Parameter values for the 100-household example

Preferences and technology (scalar)

£ Discount factor 0.952
As  Service-habit loading 0
II,  Service-consumption loading 1
Ay Durable persistence 0
©p, Durable-consumption loading 0
Ay Capital persistence 0.95
©, Capital-investment loading 1
I'  Capital productivity 0.1
Aggregate endowment process
p1 AR(1) coefficient 0.95
o, Aggregate shock std. dev. 0.5
Household heterogeneity
J  Number of households 100
a; Mean endowment ~ U[3,5]
¢; Aggregate exposure ~U[0.5,1.5], >, ¢ =1
Idiosyncratic endowment shocks
Jo  Absorbing households 50
o;j Idio. shock std. dev. 0.2+4.8 p?
p¢  Idio. shock persistence 0.9p;

Notes: pj := 1 — percentile rank of «;. Preference shocks are muted (zero loadings). See Section 3.3 for details.
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