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Abstract

We establish connections between Dynamic Mode Decompositions (DMDs), vector
autoregressions, and linear state-space models, showing that DMD efficiently estimates
low-rank first-order VAR projection coefficients from high-dimensional data. When the
measurement matrix has full column rank, the recovered nonzero eigenvalues coincide
with those of the underlying state transition matrix. We apply DMD to a 100-household
heterogeneous-agent economy with complete markets and Gorman aggregation. From
high-dimensional household income and consumption panels, DMD successfully recov-
ers low-dimensional aggregate dynamics: estimated modes track latent aggregate states
with correlations exceeding 0.90, and cross-sectional loadings reveal the sharing rule
governing redistribution. This demonstrates DMD’s capacity to extract economically
meaningful low-dimensional structure from microeconomic panels.
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1 Introduction

Applied mathematicians have recently used Dynamic Mode Decompositions (DMDs)

as a “machine learning” technique to quantify non-random dynamical systems, includ-

ing fluid dynamics (e.g., see Brunton and Kutz (2022)). This paper instead uses DMDs

to quantify a dynamical system that is persistently buffeted by random shocks. We

describe connections among Dynamic Mode Decompositions (DMDs), vector autore-

gressions (VARs), and a special case of what Stock and Watson (2016) call dynamic

factor models. DMDs are calculated using singular value decompositions and asso-

ciated eigen decompositions, but of different objects than the ones that underlie the

dynamic factor models described by Stock and Watson. In this paper we show that,

for an observation-noise-free linear state-space model, the population first-order VAR

projection coefficient is reduced-rank and can be efficiently estimated and represented

by DMD. We use a Dynamic Mode Decomposition (DMD) to infer a reduced-rank

first-order VAR from a data set [y1,y2, . . . ,yT ,yT+1].

Through its connection to the Koopman operator, the DMD algorithm has also

been used to approximate nonlinear dynamics (see Williams et al. (2015), Brunton

et al. (2016), Mezic (2020)). Our model resembles those of Geweke (1977), Sargent

and Sims (1977), Geweke and Singleton (1981), Stock and Watson (2002), Bai (2003),

and Bai and Ng (2013), but our statistical model of hidden factors differs from theirs.

Like those authors, we estimate “non-structural Kepler-stage” descriptive models that

can compress data and reveal patterns. As Koopmans (1947) recommends, we want

eventually to interpret these empirical regularities with a “structural Newton-stage”

model that is cast in terms of parameters that describe market structures and decision

makers’ preferences, constraints, and information flows. Koopmans interpreted Burns

and Mitchell (1946) as such a “Kepler” stage model of business cycles, in contrast to the

structural, simultaneous stochastic difference equation models of business cycles that
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could be constructed with tools developed by Koopmans (1950), Hood and Koopmans

(1953), and Marschak (1953).

This paper is organized as follows. Section 2 describes our statistical model, its

relationship to a reduced-rank first-order VAR, and its connections to Dynamic Mode

Decompositions. This section focuses on five objects:

1. A statistical model for a covariance-stationary stochastic process {yt}∞t=−∞ that

takes the form of a special observation-noise-free LQG state-space model, where

yt is an M × 1 vector.

2. An innovations representation of that state-space model.

3. An infinite-order vector autoregression (VAR) for {yt}∞t=−∞.

4. A reduced-rank first-order VAR.

5. A Dynamic Mode Decomposition (DMD) of a data set [y1,y2, . . . ,yT ,yT+1].

Section 2 describes situations in which

• items [1] and [2] are both valid representations of item [3]

• items [3] and [4] coincide

• item [5] provides a good way to estimate item [4]

Having acknowledged that we understand that a DMD provides a descriptive

statistical model, not what theoretical IO or macroeconomists call a “structural” model,

Section 3 proceeds to analyze the qualities of our Section 2 model as a statistical approxi-

mation to a particular structural dynamic stochastic general equilibrium (DSGE) model.

The model describes competitive equilibrium prices and quantities for a heterogeneous-

agent economy with what Milton Friedman called “homogenizing mechanisms” that

can put a factor structure into the dynamics of cross-sections of households’ income

and consumption rates. We design the DSGE model so that its equilibrium has a repre-

sentation that takes the form of a linear state-space model and an associated likelihood

function that can readily be compared via “information projection” techniques to its
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DMD counterpart for the same observable process.1 The computational experiments in

our Section 3 laboratory are designed to set the stage for an empirical application to US

CEX data in Sargent et al. (2025). Section 4 describes differences between DMDs and

some other dynamic factor models that are widely used by economists. Section 5 offers

concluding remarks about promising applications.

2 Statistical Model Underlying DMD

Let yt be an M × 1 vector and let yt−1 := {yt−s}∞s=1 denote the full past. Throughout

we use ⊥ to denote orthogonality and work with centered observables with E[yt] = 0.

We take as baseline an observation-noise-free linear state-space model with poten-

tially rank-deficient measurement:

xt+1 = A
Nx×Nx

xt+ C
Nx×Nx

wt+1

yt = G
M×Nx

xt,

(1)

where random shocks wt+1 ∼ N (0, INx). Let r := rank(G) ≤ min{M,Nx}. When r <

M , {yt} is supported on the r-dimensional subspace range(G) ⊂ RM and Cov(yt) is

singular. Equivalently, writing (1) at time t gives xt = Axt−1+Cwt, so the innovation

wt drives yt. Assume A is stable so that {xt} and {yt} are covariance-stationary. The

optimal one-step-ahead prediction conditioned on xt is

x̌t+1 = E[xt+1 | xt] = Axt,

and the associated one-step-ahead prediction error covariance matrix is

E
[
(xt+1−x̌t+1)(xt+1−x̌t+1)

⊤] = CC⊤ .

1See footnote 13 below.
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The associated steady-state innovations representation is cast in terms of the one-

step-ahead prediction vector

x̂t+1 = E[xt+1 |yt].

This innovations representation is

x̂t+1
Nx×1

= A
Nx×Nx

x̂t + K
Nx×M

at,

yt
M×1

= G
M×Nx

x̂t + at,

(2)

where at = yt−E[yt |yt−1], at ⊥ yt−1, and the steady-state Kalman gain is

K = AΣ∞G⊤(GΣ∞G⊤)+, (3)

where (·)+ denotes the Moore–Penrose pseudoinverse2, and

Σ∞ = E
[
(xt−x̂t)(xt−x̂t)

⊤]
is the positive semidefinite solution of the following algebraic matrix Riccati equation:

Σ∞ = CC⊤+(A−KG)Σ∞(A−KG)⊤. (4)

The population lag-1 linear projection coefficient is

B∗ = Cov(yt,yt−1) Cov(yt−1)
+. (5)

Note that when Cov(yt−1) is singular, there are many matrices that yield the same

fitted values on range(Cov(yt−1)). We adopt the unique Moore–Penrose representative.

2We use a pseudoinverse in (3) because GΣ∞ G⊤ has rank at most r := rank(G) and is singular when r < M .
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Define the associated linear prediction error εt := yt−B∗ yt−1, so that

yt = B∗
M×M

yt−1+εt, (6)

E[εt y⊤
t−1] = 0.

When the restriction E[εt y⊤
t−j ] = 0 holds for all j ≥ 1, (6) becomes a VAR(1) with

innovations orthogonal to the full past. Let Σx := Cov(xt) denote the stationary state

covariance that solves the Lyapunov equation

Σx = AΣxA
⊤+CC⊤ .

The next proposition characterizes the lag-1 linear projection coefficient B∗ and its

relationship to the state transition matrix A.

Proposition 1. Let Σx := Cov(xt) under (1) and let B∗ be defined by (5). Then

(i) B∗ satisfies

B∗ = GAΣxG
⊤(GΣxG

⊤)+ = GAG+
Σx

, G+
Σx

:= ΣxG
⊤(GΣxG

⊤)+.
(ii) The following properties hold:

range(B∗) ⊆ range(G), rank(B∗) ≤ rank(G),

B∗ v = λv, λ ̸= 0 ⇒ v ∈ range(G).

Proof. See Appendix A.1.1.

Proposition 1 implies that, without further structure, the object identified from {yt}

is B∗, the best linear predictor of yt given yt−1. What this reveals about the underlying

state dynamics depends on whether the measurement map xt 7→ yt = Gxt is injective.
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If rank(G) < Nx, then B∗ = GAG+
Σx

depends on A only through its transformation

on the G-visible subspace, A is not identified from B∗ without additional restrictions,

and B∗ represents only the linear projection coefficient, which may differ from a VAR(1)

coefficient if the innovations are not white. This shows that full column rank of G

is a key condition for recovering A from B∗, and the following proposition further

explores implications of this condition.

Proposition 2. Suppose that G has full column rank and let G+ = (G⊤G)−1G⊤. Define

B̃ := GAG+, ut := GCwt .

Then the following statements hold:

(i) {yt} admits VAR(1) representation

yt = B̃ yt−1+ut,

where {ut} is i.i.d. with E[ut] = 0 and ut is independent of the past yt−1. Moreover, at

in (2) satisfies at = ut, and B∗ in (5) satisfies

B∗ yt−1 = B̃ yt−1 a.s.

(ii) If in addition Σx := Cov(xt) ≻ 0, then

B∗ = B̃ = GAG+, A = G+B∗G .

Proof. See Appendix A.1.2.

Proposition 2 highlights what can be inferred about A from the lag-1 linear pro-

jection coefficient once the measurement map is injective. When G has full column
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rank and Σx ≻ 0 (so that B∗ = GAG+ by Proposition 2(ii)), the same algebra with

any symmetric positive definite Nx ×Nx matrix S in place of Σx shows that we can

equivalently write

B∗ = GASG⊤(GSG⊤)+. (7)

Moreover, Corollary 1 below shows that under CC⊤ ≻ 0, the Kalman gain and state

transition matrix satisfy A = KG.

Corollary 1. Suppose that G has full column rank. If in addition CC⊤ ≻ 0, then the Riccati

equation (4) reduces to

Σ∞ = CC⊤ ≻ 0, (8)

and the corresponding Kalman gain satisfies A = KG.

Proof. See Appendix A.1.3.

If in addition CC⊤ ≻ 0, Corollary 1 implies that Σ∞ = CC⊤ ≻ 0, so we can

choose S = Σ∞ and write (7) as

B∗ = GAΣ∞G⊤(GΣ∞G⊤)+. (9)

Comparing (9) with the Kalman-gain formula (3), we obtain

B∗ = GK .

To summarize:

(i) Under full column rank G, Proposition 2(i) gives a VAR(1) with innovations

ut = GCwt orthogonal to the full past, and the first-order coefficient is uniquely

represented by the Moore–Penrose choice B∗ in (5).

(ii) Under full column rank G and Σx ≻ 0, Proposition 2(ii) yields B∗ = GAG+ and

A = G+B∗G. In particular, the nonzero eigenvalues of B∗ equal the eigenvalues
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of A (with additional zeros when M > Nx).

(iii) Under full column rank G and CC⊤ ≻ 0, Corollary 1 yields A = KG and

Σ∞ = CC⊤, and B∗ = GK.

2.1 DMD as Estimator of Reduced-Rank First-Order VAR

In this section, we show how Dynamic Mode Decomposition (DMD) provides a com-

putationally efficient rank-N estimator B̂ of B∗ from data matrices. When G has full

column rank and Σx ≻ 0, Proposition 2(ii) implies that the nonzero eigenvalues of

B∗ equal those of A and A = G+B∗G if G is known, so replacing B∗ by B̂ yields

an estimator of A. If G is unknown, DMD estimates a low-dimensional invariant

subspace of B∗ encoded by its dynamic modes.

We estimate the lag-1 projection coefficient B∗ in (6) using a data set organized

as follows. Let yt denote an M × 1 vector of demeaned random variables for t =

1, . . . , T + 1,3 and assume M > T , so there are more variables than time periods. Stack

the yt across time to create two M × T data matrices Y and Y′:

Y = [y1,y2, . . . ,yT ], (10)

Y′ = [y2,y3, . . . ,yT+1]. (11)

Thus, we have MT data points from which we want to estimate M2 parameters in an

M ×M coefficient matrix. When M2 > MT , least squares is underdetermined. Hence,

we impose a rank constraint on the estimator. Fix a target reduced rank N ≤ min{M,T}.

We target the rank-constrained least-squares problem

B̂ = argmin
rank(B)≤N

∥Y′−BY ∥2F . (12)

3Hirsh et al. (2020) show that centering the data is equivalent to incorporating an affine term in the dynamic model
and improves the performance of DMD in correctly extracting the dynamics of the data.
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Assume the smallest singular value σN > 0 so the reduced SVD below exists. Compute

the reduced SVD of Y with U ∈ RM×N , Σ = diag(σ1, . . . , σN ) ∈ RN×N , and V ∈

RT×N :

Y ≈ UΣV⊤, (13)

which is the best rank-N approximation of Y in the Frobenius norm by the Eckart–

Young–Mirsky theorem (Golub and Van Loan, 2013, Theorem 2.4.8). Define the rank-N

approximation YN := UΣV⊤. The solution to the rank-constrained problem (12) can

be written using the Moore–Penrose pseudoinverse of YN .

With (13), the Moore–Penrose pseudoinverse of the rank-N truncation YN is

Y+
N = VΣ−1U⊤, so that Y+

N YN = VV⊤,

since YN = UΣV⊤ and U⊤U = IN imply Y+
N YN = VΣ−1U⊤UΣV⊤ = VV⊤.

We use this to form the least-squares estimator on the rank-N subspace:

B̂ := Y′Y+
N = Y′VΣ−1U⊤ .

Define the reduced operator

Ã := U⊤Y′VΣ−1,

with eigendecomposition ÃW = WΛ, and set

Φ := Y′VΣ−1W .

The columns of Φ are the DMD dynamic modes. The following proposition summarizes

key properties of B̂ and Φ.

Proposition 3. Let U,Σ,V be as in (13) and let PΦ := ΦΦ+ denote the orthogonal projection

onto the column space of Φ. Then the following hold:
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(i) B̂Φ = ΦΛ

(ii) B̂PΦ = ΦΛΦ+.

Proof. See Appendix A.1.4.

Given B̂, define residuals ât := yt−B̂ yt−1 for t = 2, . . . , T + 1 and the sample

covariance Ω̂ = T−1
∑T+1

t=2 âtâ
⊤
t . These residuals satisfy the sample first-order normal

equations (Proposition 4) and are therefore pseudo-innovations for the fitted VAR(1),

not necessarily innovations for the data-generating process. Proposition 3 states that

on the rank-N fitted subspace, B̂PΦ = ΦΛΦ+.

Proposition 1 implies that the population lag-1 projection coefficient satisfies B∗ =

GAG+
Σx

, with range(B∗) ⊆ range(G) and all eigenvectors of B∗ associated with

nonzero eigenvalues lying in range(G). Proposition 3 shows that DMD produces a

rank-N estimator B̂ whose spectral information is encoded in its dynamic modes

Φ and eigenvalues Λ. Under standard eigen-gap conditions, the column space of

Φ estimates an invariant subspace of B∗ and the corresponding eigenvalues in Λ

estimate the associated nonzero eigenvalues of B∗.4 When G has full column rank

and Σx ≻ 0, these nonzero eigenvalues equal the eigenvalues of the underlying

state transition matrix A (Proposition 2(ii)). When G is rank-deficient, Λ should be

interpreted as describing the eigenvalues of the observed lag-1 projection operator B∗.

These eigenvalues coincide with a subset of eigenvalues of A only under additional

structure (e.g., when the G-visible state subspace is invariant under A).

Algorithm 1 summarizes the exact DMD procedure for estimating the reduced-rank

VAR operator B̂, DMD modes Φ, and eigenvalues Λ from an M × (T + 1) data matrix

Y.

4Eigenvector convergence typically requires well-separated eigenvalues. When two eigenvalues are close or
repeated, the corresponding eigenspaces converge but individual eigenvectors within those spaces may not be uniquely
identified.
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Algorithm 1 Exact DMD for reduced-rank VAR estimation (Tu et al., 2014)

Input: Data matrix Y ∈ RM×(T+1), rank N

1. Demean rows: Ỹ = Y−ȳ1⊤ where ȳ = 1
T+1

∑T+1
t=1 yt

2. Form snapshot matrices:

Y = [ỹ1, . . . , ỹT ], Y′ = [ỹ2, . . . , ỹT+1]

3. Compute truncated SVD of Y:

Y ≈ UΣV⊤

where U ∈ RM×N , Σ ∈ RN×N , V ∈ RT×N

4. Compute reduced-rank VAR operator:

B̂ = Y′VΣ−1U⊤

5. Project to reduced space and compute eigendecomposition:

Ã = U⊤Y′VΣ−1, ÃW = WΛ

6. Compute DMD modes:
Φ = Y′VΣ−1W

Output: B̂, Φ, Λ
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2.2 Ramifications

Define the rank-N DMD operator B̃ := ΦΛΦ+. By Proposition 3, B̂PΦ = B̃. From

now on we work with B̃, which has the same action as B̂ on the rank-N subspace

spanned by the DMD modes.

Proposition 4. Define the modal coordinates x̃t := Φ+ yt.5 Then the reduced-rank VAR has

the linear state-space representation

x̃t = Λx̃t−1 +Φ+ât,

yt = ΦΛx̃t−1 + ât,

(14)

with
∑T+1

t=2 ât y
⊤
t−1 = 0 and Ω̂ = T−1

∑T+1
t=2 âtâ

⊤
t .

Proof. From B̃ = ΦΛΦ+, we have yt = ΦΛΦ+ yt−1+ât. Premultiplying by Φ+ yields

(14).

The dynamic modes x̃t in Proposition 4 evidently have a moving average represen-

tation

x̃t+j = Λjx̃t +

j−1∑
s=0

ΛsΦ+ât+j−s. (15)

Under serially uncorrelated residuals {ât} with covariance Ω̂, the j-step-ahead condi-

tional covariances of the modes are

E
[
(x̃t+j − E[x̃t+j | x̃t])(x̃t+j − E[x̃t+j | x̃t])

⊤
]
=

j−1∑
s=0

ΛsΦ+Ω̂(Φ+)⊤(Λ⊤)s (16)

When Λ is complex-valued, ·⊤ denotes the conjugate transpose. See Appendix B.1 for

more details.

5When Φ has full column rank, x̃t gives the coordinates of PΦ yt in the mode basis. When Φ is rank-deficient, x̃t

is the minimum-norm least-squares coefficient of yt regressed on the columns of Φ.
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Collectively, Propositions 1–4 establish how DMD estimates a reduced-rank VAR(1)

representation of the observable process {yt} and how the fitted reduced-rank VAR(1)

can be expressed in terms of dynamic modes Φ and eigenvalues Λ. When G has full

column rank and the truncation rank is chosen as N = Nx, the fitted realization can

be related to the state dynamics up to a similarity transformation: in population, the

nonzero eigenvalues in Λ match the eigenvalues of A (Proposition 2(ii)), and under

standard eigen-gap conditions the column space of Φ estimates the column space of G.

When G is rank-deficient, Proposition 4 still yields a valid state-space representation

for the reduced-rank VAR in {yt}, but Λ and Φ should be interpreted as describing

the most salient observable dynamics and do not in general identify the structural

transition matrix A (Proposition 1).

2.3 Two Innovations Representations

Section 2.1 described how to use DMD to estimate a reduced-rank first-order vector

autoregression and then to use it to cast representation (14) in terms of dynamic modes

x̃t. In this section, we rewrite system (14) in a one-step-ahead form that resembles an

innovations representation for the fitted reduced-rank VAR(1). Define the one-step-

ahead predictor in modal coordinates by

x̂t := Λx̃t−1 = ΛΦ+ yt−1 . (17)

Here x̂t is defined from the fitted VAR(1) and should not be confused with the Kalman

predictor x̂t in (2). From (17), x̂t = Λx̃t−1 and, by shifting the index, x̂t+1 = Λx̃t.

Substituting x̂t = Λx̃t−1 into the measurement equation, i.e., the second equation of

(14), gives us

yt = Φx̂t + ât.
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Because ât is the least-squares residual from regressing yt on yt−1 (equivalently, on

ΦΛx̃t−1), it satisfies the sample normal equations
∑T+1

t=2 ât y
⊤
t−1 = 0. Now time-shift

the first equation of system (14) forward to obtain

x̃t+1 = Λx̃t +Φ+ât+1,

then multiply both sides by Λ to get

Λx̃t+1 = Λ2x̃t +ΛΦ+ât+1.

Using x̂t+2 = Λx̃t+1 and x̂t+1 = Λx̃t, this becomes

x̂t+2 = Λx̂t+1 +ΛΦ+ât+1.

Shifting indices back by one yields our pseudo innovations representation

x̂t+1 = Λx̂t +ΛΦ+ât,

yt = Φx̂t + ât.

(18)

Equation (18) gives a one-step-ahead (pseudo-innovations) state-space realization

of the fitted rank-N VAR(1): it reproduces the fitted linear predictor B̃ yt−1 = Φx̂t

and the associated residuals ât := yt−B̃ yt−1 from the reduced-rank coefficient B̃ =

ΦΛΦ+. This construction parallels the steady-state innovations representation (2) of

the baseline state-space model (1), in which (A,G,K) and innovations at generate the

one-step-ahead predictor and update.

The difference is informational: ât are defined by the least-squares projection used to

fit the VAR, so they impose only the sample orthogonality conditions
∑T+1

t=2 ât y
⊤
t−1 = 0

(and, in population, E[ât y⊤
t−1] = 0), whereas the innovations at in (2) satisfy at ⊥ yt−1.

When the data-generating process is VAR(1) with white innovations (for example,
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under the injective-measurement case of Proposition 2(i)), these notions coincide and

(18) becomes an innovations representation. This discussion preludes the information-

projection interpretation of DMD in Section 3.

Motivated by this analogy, a realization of the fitted VAR(1) is obtained by setting

Â := Λ, K̂ := ΛΦ+, Ĝ := Φ. (19)

3 Approximating Versus Underlying Structural Model

In the spirit of Koopmans (1947) and Sargent and Sims (1977), we regard the model

in Section 2 as a Kepler-stage descriptive model whose role is to detect and organize

data patterns that a Newton-stage structural model should be designed to interpret

and explain. Lucas (1987) and other leading 20th-century macroeconomists viewed

descriptive findings like those of Burns and Mitchell (1946) as providing empirical

underpinnings for a “neo-classical synthesis” that separates macroeconomic from mi-

croeconomic analysis of redistribution and social insurance.6 That descriptive statistical

work indicates that the evolution of the macroeconomic quantities reported in National

Income and Product Accounts emerged from the operation of some type of “homog-

enizing mechanism” that aggregates a myriad of microeconomic shocks into one or

two macroeconomic “factors” and shocks.7 According to Koopmans (1947) and Lucas

(1987), the role of structural macroeconomic theory is to interpret and explain these

regularities.

In this section, we formulate a particular homogenizing mechanism, namely a

competitive equilibrium in the complete-markets tradition of Arrow–Debreu. We use

it to generate a vector stochastic process for a cross-section of households’ income

and consumption, and then use the statistical model in Section 2 to describe the

6See Sargent (2015, 2024).
7Milton Friedman suggested the term “homogenizing mechanism” to Sargent in personal conversations in 1976.
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simulated data. In this way, we learn how DMD-recovered parameters depend on the

parameters of the underlying structural model. In Sargent et al. (2025), we use our

Section 2 model to study the dynamics of CEX cross-sections of US personal income

and consumption, so here we take an off-the-shelf Arrow–Debreu model, namely,

a member of a class of readily computable linear-quadratic structures presented by

Hansen and Sargent (2013). Thus, in the spirit of White (1982) and Hansen and Sargent

(1993), our purpose is to study properties of our Section 2 descriptive model as a

presumably misspecified approximation to a particular structural model. We do this

by constructing an “information projection” of the structural model onto the DMD

model.8

In Sargent et al. (2025), we detected evidence of substantial redistribution and insur-

ance in US CEX data from 1990 to 2023. The structural model presented in this section

delivers such outcomes. It is a linear-quadratic DSGE economy with heterogeneous

households whose preferences satisfy Gorman aggregation conditions (Hansen and Sar-

gent, 2013, ch. 12). Hence, competitive equilibrium prices and aggregate quantities can

be computed without tracking the cross-sectional wealth distribution and household-

level consumption allocations respond to aggregate dynamics through time-invariant

Gorman weights.

In our structural model, two “homogenizing mechanisms”‘ are active, one exoge-

nous, the other endogenous. We build in the exogenous part of the mechanism when

we specify that households’ exogenous stochastic consumption endowments, i.e., their

“Lucas trees”, share a common dynamic factor.9 The endogenous part comes from the

extensive risk-sharing that competitive and complete markets deliver. As we shall

see, it is easy for us to simulate efficient redistributions by simply tilting the vector of

Pareto weights that emerge from an initial competitive equilibrium allocation. We take

8See footnote 13 below for an explanation of “information projection”. See Sargent (1976) for an early application.
9Eberly and Wang (2025) provide the canonical “two-tree” model that extends the classic one-tree model of Lucas

(1978). Our Hansen and Sargent (2013, ch. 12) model has as many trees as households.
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advantage of that feature to generate outcomes that resemble ones uncovered by our

statistical analysis with the CEX data in Sargent et al. (2025), as exhibited by comparing

Figure 3 below with Figure 3 in Sargent et al. (2025). Among other things, we also study

how well, when applied to a high-dimensional household panel, DMD recovers low-

dimensional aggregate dynamics that drive household incomes and consumptions in

the DSGE model that actually generates the data in our system of artificial households

and traders.

3.1 Gorman Aggregation Environment

Time is discrete, t ∈ {0, 1, 2, . . .}. There are J households, indexed by j, who share

a common discount factor β ∈ (0, 1) and information set, but differ in preferences

and endowments. Households consume a single final good and supply a single

intermediate input, which for convenience we sometimes call “labor”. Household j

chooses {cjt, ℓjt}t≥0 to maximize

−1

2
E0

∞∑
t=0

βt
[
(sjt − bjt)

⊤(sjt − bjt) + ℓ⊤jtℓjt

]
(20)

subject to a household service technology

sjt = Λshj,t−1 +Πscjt,

hjt = ∆hhj,t−1 +Θhcjt,

and an Arrow–Debreu time-0 intertemporal budget constraint

E0

∞∑
t=0

βtp0t · cjt = E0

∞∑
t=0

βt(w0tℓjt + α0t · djt) + v0 · kj,−1,

Here cjt is consumption, ℓjt is labor supply, hjt is a household durable stock, and

sjt is the associated service flow. p0t is the price of consumption, w0t is the price of the
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intermediate input, α0t is the price vector of endowment goods, and v0 is the price of

the initial capital stock kj,−1. Bliss points bjt = Uj
b zt and endowments djt = Uj

d zt are

linear in an exogenous state vector zt ∈ Rnz that follows

zt+1 = A22 zt+C2wt+1, wt+1 ∼ N (0, I). (21)

Heterogeneity enters only through the loadings (Uj
b,U

j
d) and initial stocks (hj,−1, kj,−1);

the technology parameters (Λs,Πs,∆h,Θh) are common across households. This struc-

ture implies individual demands are affine in wealth with common marginal propensi-

ties, a necessary condition for Gorman aggregation (Gorman, 1953).

3.2 Aggregate Dynamics and the Sharing Rule

Competitive equilibrium allocations are Pareto efficient and can be computed from a

representative-agent planning problem. Define aggregates ct :=
∑

j cjt, ht :=
∑

j hjt,

kt :=
∑

j kjt, and let Ub :=
∑

j U
j
b, Ud :=

∑
j U

j
d so that bt = Ub zt and dt = Ud zt. The

planner maximizes

−1

2
E0

∞∑
t=0

βt
[
(st − bt)

⊤(st − bt) + g⊤t gt

]
(22)

subject to

Ψcct +Ψggt +Ψiit = Γkt−1 + dt, kt = ∆kkt−1 +Θkit,

ht = ∆hht−1 +Θhct, st = Λsht−1 +Πsct.

In (22), gt is an aggregate intermediate good and it is investment. Let µw
0j denote house-

hold j’s time-zero marginal utility of wealth and define the Pareto weight associated

with the competitive equilibrium for an economy with initial stocks (kj,−1, hj,−1) and
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exogenous endowments {dj,t} across agents j as

µj :=
µw
0j∑J

i=1 µ
w
0i

. (23)

The consumption allocation rule takes the form

cjt = µjct + χ̃jt, (24)

where µjct is household j’s proportional share of aggregate consumption and χ̃jt is a

deviation term determined by preference heterogeneity. The deviations sum to zero:∑
j χ̃jt = 0. The weight µj depends only on time-0 conditions and is time-invariant.

Holding aggregate endowments and initial aggregate stocks fixed, if we assume a

new set of Pareto weights that sum to 1, then (24) describes the new allocation while

leaving aggregate dynamics unchanged. In this way, we can describe the outcomes

of a Pareto-efficient redistribution scheme while leaving open details about the exact

redistributions. There is an equivalence class of distributions of initial capital stocks

and endowments that validate a given set of Pareto weights. We therefore model

redistribution by directly perturbing the Pareto weights.

For a special case of our model in which preference shocks are shut down, an

Arrow–Debreu complete-markets allocation can be implemented with a limited set

of markets: a mutual fund holding all endowment claims and a one-period riskless

bond. When the riskless return is constant and the deviation baseline {χ̃jt} is known

at time 0, all households hold the same portfolio of risky assets (the mutual fund), and

dynamic rebalancing occurs solely through the bond market. This trading structure

implements an efficient allocation and extends a two-fund theorem of Rubinstein (1974)

to a multiperiod setting.10

10Sargent and Stachurski (2025) provides a more detailed discussion of the model in their lecture.
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3.3 A 100-Household Example

We now construct a large-panel experiment in which DMD is applied to a high-

dimensional cross-section of household outcomes generated by the Gorman economy.

Set J = 100 and define vectors ηt := (ηJa+1,t, . . . , ηJ,t)
′ as the idiosyncratic endowment

states for j > Ja and ξt := (ξ1,t, . . . , ξJ,t)
′ as the preference-shock states. The exogenous

state is

zt =



1

da,t

ηt

ξt


.

The aggregate component follows the AR(1) process

da,t+1 = ρ1da,t + σaεa,t+1, (ρ1, σa) = (0.95, 0.5).

where εa,t+1 ∼ N (0, 1) is the aggregate innovation (a component of wt+1 in (21)).

We set Ja = 50 and construct endowments so that idiosyncratic shocks cancel in the

aggregate:

djt = αj + ϕjda,t + ηj,t, j = Ja + 1, . . . , J,

djt = αj + ϕjda,t −
1

Ja

J∑
k=Ja+1

ηk,t, j = 1, . . . , Ja.

In this setting,
∑J

j=1 djt depends on {da,t} but not on {ηj,t} once we normalize∑J
j=1 ϕj = 1. We draw αj ∼ U [3, 5] and ϕ̃j ∼ U [0.5, 1.5], then set ϕj = ϕ̃j/

∑J
i=1 ϕ̃i. To

generate an economy where low-income households experience more idiosyncratic

risk, we define pj as one minus the percentile rank of αj in the cross-section and set,

for j > Ja,

σj = 0.2 + (5.0− 0.2) p2j , ρdj = 0.0 + (0.90− 0.0) pj ,
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in the AR(1) process ηj,t+1 = ρdjηj,t + σjε
d
j,t+1. The innovations {εdj,t+1} are i.i.d. N (0, 1)

across j and t and are components of wt+1. Preference shocks are muted in this

experiment by setting the innovation loadings on ξj,t to zero. We interpret changes in

Pareto weights as an incompletely described, Pareto-efficient tax-and-transfer scheme

that redistributes resources across households without changing aggregate dynamics.

To implement redistribution, we compute an alternative Pareto-efficient allocation that

replaces the competitive equilibrium weights {µj} with redistributed weights {µ∗
j}

defined by

µ∗
j = (1− a)µj + a/J, a = 0.8,

so that
∑J

j=1 µ
∗
j = 1. As mentioned above, there is an equivalence class of efficient

tax-and-transfer systems that imply these Pareto weights.

We simulate the economy for 2,000 periods and discard the first 200 as burn-in.

Figure 1 plots simulated household consumption and post-trade dividend-income

panels, and Figure 2 summarizes the redistribution in Pareto weights. Under the

sharing rule (24), the aggregate component of consumption is µjct, the source of strong

comovements across households (Figure 1).

Figure 2 shows that the reduced-form redistribution tilts weights away from those

implied by initial marginal utilities of wealth toward a more uniform assignment.

Because Gorman aggregation pins down the aggregate allocation independently of the

Pareto weights, this redistribution operates only through the sharing rule: it reshuffles

the cross-sectional allocation while leaving the aggregate dynamics (ct, kt) unchanged.

To visualize and model the tax-and-transfer mechanism in the economy, we define

the household income process and study how redistribution affects household income

and consumption. Let yjt(ω) be household j’s net income for a given Pareto-weight

vector ω, and define household j’s net income at time t as

yjt(ω) = ωjdt + (R− 1)wj,t−1, (25)
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Figure 1: Household consumption and post-trade dividend-income paths in the 100-

household economy (after burn-in). Each line corresponds to a household.

where dt is the aggregate endowment, R = 1/β is the gross return, and wj,t−1 =

ωjkt−1 + k̂j,t−1 is household j’s total asset comprising a proportional capital share

ωjkt−1 and a bond position k̂j,t−1. The first term is dividend income from holding ωj

shares of the aggregate endowment; the second term is the net return on wealth. Let

yprejt := yjt(µ) denote household j’s net income under the competitive equilibrium

weight vector {µj}, let ypostjt := yjt(µ
∗) denote net income under the redistributed

weights {µ∗
j}, and let cpostjt denote post-redistribution consumption.

The effect of redistribution on household income and consumption is clearly visible

in Figure 3, which plots cross-sectional percentiles of pre- and post-redistribution

income and post-redistribution consumption.
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Figure 2: Pareto weights in the 100-household economy. The left panel plots the

Gorman weights {µj} and redistributed weights {µ∗
j} after sorting households by µj .

The right panel plots µ∗
j − µj .
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Figure 3: Cross-sectional percentiles (p10, p50, p90) of pre-redistribution income yprejt ,

post-redistribution income ypostjt , and post-redistribution consumption cpostjt in the 100-

household experiment (after burn-in).
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3.4 Ground Truth State-Space Representation

A solution to the planner’s problem yields equilibrium prices and allocations as linear

functions of the aggregate state. This provides a ground-truth state-space representa-

tion for the high-dimensional household panel. The aggregate state vector is

xt =


ht−1

kt−1

zt

 ,

where ht−1 is the aggregate household durable stock, kt−1 is the aggregate capital stock.

The equilibrium law of motion for the state evolves according to

xt+1 = Ao xt+Cowt+1, wt+1 ∼ N (0, I). (26)

Any equilibrium quantity is a linear function of the state. Stacking aggregate consump-

tion, government spending, investment, household durables, capital, endowments,

bliss points, and services gives a measurement equation

y
agg
t :=



ct

gt

it

ht

kt

dt

bt

st



= Go xt, (27)

where Go stacks the pertinent selection vectors.
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Suppose an econometrician observes only household-level income and consump-

tion data, without direct knowledge of the underlying state xt or the structural param-

eters governing its evolution. That is, (26) is out of reach. The econometrician observes

a high-dimensional panel that stacks households’ pre- and post-redistribution incomes

and post-redistribution consumptions as

yGL
t :=



ypre1t

...

ypreJt

ypost1t

...

ypostJt

cpost1t

...

cpostJt



∈ RM , M = 3J.

Define the J-vectors ypre
t := (ypre1t , . . . , ypreJt )

⊤, ypost
t := (ypost1t , . . . , ypostJt )⊤, and cpostt :=

(cpost1t , . . . , cpostJt )⊤ so that yGL
t = [ypre

t ;ypost
t ; cpostt ]. Since (as verified below) each compo-

nent of yGL
t is well approximated as a linear function of the state, the household panel

is well approximated by a state-space representation of the form

xt+1 = Ao xt+Cowt+1,

yGL
t = GGL xt,

(28)

which is a special case of (1) with (A,C,G) = (Ao,Co,G
GL). The measurement matrix
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GGL has the block structure

GGL =


Gy,pre

Gy,post

Gc,post

 GGL ∈ RM×Nx ,

where Nx = 154 is the dimension of xt.11 and Gy,pre,Gy,post,Gc,post ∈ RJ×Nx map

xt to ypre
t , ypost

t , and cpostt , respectively. To write GGL in closed form, we express each

observable as a linear function of the aggregate state xt.

For income, combining (25) with the asset decomposition wj,t−1 = ωjkt−1 + k̂j,t−1

gives

yjt(ω) = ωjdt + (R− 1)ωjkt−1 + (R− 1)k̂j,t−1, (29)

where the first two terms depend only on aggregates, but the third term involves house-

hold j’s idiosyncratic bond position k̂j,t−1. In the limited-markets implementation

of the complete-markets allocation, the bond position is driven by the sharing-rule

deviation through the law of motion

k̂jt = R k̂j,t−1 − χ̃jt, (30)

where χ̃jt is the deviation term from the sharing rule (24). The initial bond position is

pinned down by the present value of future deviations:

k̂j0 =

∞∑
s=1

βsχ̃js. (31)

In general, writing yjt as a static function of xt alone requires augmenting the state

with {k̂j,t−1}Jj=1. However, when preference shocks are muted so that χ̃jt is negligible,

11The 154 states consist of ht−1, kt−1, da,t, da,t−1, ηt ∈ RJ−Ja with J − Ja = 50, and ξt ∈ R100.
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equations (30)–(31) imply k̂jt ≈ 0 for all j and t, and income is well approximated by

yjt(ω) ≈ ωj Sd xt+(R− 1)ωj Sk xt, (32)

where Sd and Sk are selection vectors such that dt = Sd xt and kt−1 = Sk xt. This yields

the income row Gy
j ≈ ωjSd+(R−1)ωjSk with Gy ∈ {Gy,pre,Gy,post} and ωj ∈ {µj , µ

∗
j}

correspondingly.

The sharing rule (24) implies

cjt = µjct + χ̃jt, (33)

where the deviation χ̃jt captures preference heterogeneity. Under the canonical house-

hold technology, χ̃jt is driven by the deviation bliss point b̃jt := bjt − µjbt. In our

calibration with Λs = 0, the inverse representation simplifies to

χ̃jt = Π−1
s b̃jt, b̃jt = Uj

b zt−µjbt, (34)

where Πs is the service–consumption loading in the household technology and bt =

Sb xt is the aggregate bliss point. Substituting yields

Gc
j = µjSc +Π−1

s

(
Uj

b Sz − µjSb

)
, (35)

where Sc and Sz select aggregate consumption and the exogenous block from xt,

respectively. For post-redistribution consumption, replace µj with µ∗
j in (35), i.e.

G
c,post
j = µ∗

jSc +Π−1
s (Uj

b Sz − µ∗
jSb).

In our numerical experiments, we mute the idiosyncratic preference shocks by

setting their innovation variances to zero. This has two consequences. First, the

consumption deviation χ̃jt in (34) becomes nearly deterministic. Second, the bond
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dynamics (30)–(31) nearly collapse: when χ̃jt ≈ 0, the initial condition (31) gives

k̂j0 ≈ 0, and the law of motion (30) implies k̂jt ≈ 0 for all t. Therefore, the idiosyncratic

term (R− 1)k̂j,t−1 becomes negligible in (29), and approximation (32) is accurate.

Moreover, we work with a T = 250 subsample of the post-burn-in data. Here,

M = 300 and T = 250, so M > T .12 The household panel {yGL
t }Tt=1 is our input to

the DMD procedure of Section 2.1 to estimate a reduced-rank VAR operator B̂ and

its eigendecomposition. In our laboratory, we generate aggregates from the linear

state-space system (26)–(27), but the econometrician observes only microdata at the

household level {yGL
t }Tt=1. We assess DMD’s performance through diagnostics that

compare estimated objects to their ground-truth counterparts. We proceed from rank

selection to spectral and state recovery, then turn to cross-sectional loadings and

forecasting.

Before examining empirical results, it is useful to record the population object that

DMD targets. Since our DMD implementation is applied to demeaned snapshots, we

work with the centered panel yt := yGL
t −ȳ, where ȳ is the sample mean of {yGL

t }Tt=1.

The centered panel yt admits a state-space representation that parallels (1)–(2). Let

(A,C,G) denote the state transition, shock loading, and measurement matrices of the

centered state-space system (i.e., with the constant state component removed from

(Ao,Co,G
GL)). The centered state-space representation is

xt+1 = Axt+Cwt+1,

yt = Gxt,

(36)

12We simulate 2,000 periods, discard the first 200 periods as burn-in, and extract a 250-period subsample for DMD
analysis.
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where wt+1 ∼ N (0, I). The associated steady-state innovations representation is

x̂t+1 = Ax̂t +KGL at,

yt = Gx̂t + at,

(37)

where x̂t := E[xt | yt−1] is the one-step-ahead state prediction, at := yt−Gx̂t is the

innovation, and the steady-state Kalman gain is

KGL := AΣ∞G⊤(GΣ∞G⊤)+, (38)

with Σ∞ := E[(xt−x̂t)(xt−x̂t)
⊤] denoting the steady-state prediction error covariance.

To derive the vector autoregressive representation, iterate (37) forward. From the

first equation, x̂t = Ax̂t−1 +KGL at−1. Substituting into the second equation of (37)

gives

yt = GAx̂t−1 +GKGL at−1+at . (39)

From the second equation of (37) at t − 1, we have Gx̂t−1 = yt−1−at−1. Repeated

substitution yields

yt =

∞∑
j=1

G(A−KGL G)j−1KGL yt−j +at . (40)

Define the VAR coefficient matrices

Bj := G(A−KGL G)j−1KGL, j ≥ 1 (41)

Then the infinite-order VAR representation becomes

yt =
∞∑
j=1

Bj yt−j +at . (42)
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This is a vector autoregressive representation for the centered household panel {yt}.

Let Σx := Cov(xt) denote the stationary covariance of the centered state. The

population VAR(1) coefficient is the linear projection of yt on yt−1:

B∗ := Cov(yt,yt−1) Cov(yt−1)
+ = GAΣxG

⊤
(
GΣxG

⊤
)+

. (43)

When B∗ has (effective) rank at most N , a rank-N DMD estimator targets B∗. We now

examine the eigenvalue structure of B∗ and {Bj} to assess the suitability of a low-rank

approximation.
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Figure 4: Eigenvalue structure of population VAR coefficient matrices. Left: Eigenvalue

magnitudes for the population VAR(1) coefficient B∗ and the first three infinite-order

VAR coefficients B1,B2,B3. Right: Spectral radius and Frobenius norm of Bj across

lags.

Figure 4 provides evidence that the population first-order VAR coefficient B∗

and the infinite-order VAR coefficients {Bj} are both effectively low-rank. The left

panel plots the eigenvalue magnitudes of B∗ and the first three infinite-order VAR

coefficients B1,B2,B3 from (42). For each matrix, the top two eigenvalues dominate,
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with magnitudes around 10−1 to 1, while all other eigenvalues are numerically 0.

The nearly rank-2 structure of the VAR coefficient matrices is inherited from the

economic structure of our DSGE model. Under the sharing rule (24), household

consumption cjt = µjct + χ̃jt is dominated by the aggregate component µjct, which

under the planner’s linear decision rule is itself a linear function of (kt−1, da,t). Similarly,

from the income definition (25), household income yjt = ωjdt + (R− 1)wj,t−1 depends

on aggregate endowment dt (a linear function of da,t) and wealth wj,t−1, which loads

on aggregate capital kt−1. Although the full state vector xt contains idiosyncratic

endowment states {ηj,t} with dimension J − Ja, these components are constructed

to cancel in the aggregate (Section 3.3) and do not contribute additional predictive

directions for the centered panel. Hence, the M -dimensional observable vector yt

lies in a two-dimensional affine subspace spanned by loadings on (kt−1, da,t), and the

population VAR coefficients inherit this low-rank structure.

The right panel of Figure 4 shows the spectral radius ρ(Bj) and Frobenius norm

∥Bj ∥F across lags j = 1, . . . , 10. Both decay rapidly: the spectral radius falls from

near unity at lag 1 to below 0.1 by lag 2, reflecting the geometric decay rate governed

by eigenvalues of the closed-loop observer A−KGL G. This decay implies that even

though the true representation (42) is an infinite-order VAR, most predictive infor-

mation concentrates in the first lag, making a VAR(1) a promising approximation.

Heuristically, these results justify using a small N in DMD: when the spectrum of B∗

is dominated by a few eigenvalues, a low-rank approximation captures most of the

predictive content.

By viewing our estimated DMD model as an “information projection” of our

structural model onto the DMD family, we can analyze properties of our descriptive

Section 2 model as an approximation to our structural DSGE.13 Let θ denote the

13Csiszár and Matus (2003) and Nielsen (2018) describe information projections. Let {fθ(x)}θ∈Θ and {gδ(x)}δ∈∆

be two collections (manifolds) of probability distributions for outcomes x ∈ X . When model gδo (x) governs the data,
a population maximum likelihood estimator θo of parameter vector θ ∈ Θ of misspecified statistical model fθ(x)
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parameters of our DMD model and let δ denote the parameters of our structural DSGE

model. When the structural model with parameter δo generates the data, information

projection selects the KL-minimizing DMD parameter θo. By studying the mapping

δo 7→ θo, we can learn how the parameters of the approximating descriptive model

reflect the parameters of the structural model. In the remainder of this section, we

describe aspects of this information projection in our setting.

Footnote 13 specializes in our setting to a conditional KL projection. We approxi-

mate the true one-step-ahead conditional law of yt by a Gaussian VAR(1) conditional

family, and define the best-fitting VAR coefficient as the KL minimizer.

When Γ0 := E[yt−1 y
⊤
t−1] is singular, yt is supported on the subspace S :=

range(Γ0) ⊂ RM . Let r := rank(Γ0), choose R ∈ RM×r with orthonormal columns

spanning S, and write ỹt := R⊤ yt ∈ Rr (so yt = Rỹt a.s.). Assume the con-

ditional law of ỹt given yt−1 admits a Lebesgue density pt(· | yt−1) on Rr with

E | log pt(ỹt | yt−1)| < ∞. For B̃ ∈ Rr×r and Ω̃ ≻ 0, let q
B̃,Ω̃

(· | ỹt−1) denote the

Gaussian VAR(1) density on Rr corresponding to ỹt | ỹt−1 ∼ N (B̃ỹt−1, Ω̃). 14

Define the expected conditional KL risk

D(B̃, Ω̃) := E

[∫
Rr

log

(
pt(ỹ | yt−1)

q
B̃,Ω̃

(ỹ | ỹt−1)

)
pt(ỹ | yt−1) dỹ

]
. (44)

minimizes the Kullback-Leibler divergence

KL(gδo , fθ) =
∫

log

(
gδo (x)

fθ(x)

)
gδo (x)dx = −H(gδo )− Egδo

log fθ(x),

where H(gδo ) =
∫
log

(
1

gδo (x)

)
gδo (x)dx is the Shannon information of nature’s probability distribution gδo (x)

and Egδo
denotes mathematical expectation under gδo (x). The information projection of gδo (x) onto {fθ(x)}θ∈Θ is

distribution fθo (x) in manifold {fθ(x)}θ∈Θ that maximum likelihood selects when nature’s model gδo generates the
data, i.e., θo = argmaxθ∈Θ Egδo

log fθ(x) is the population maximum likelihood estimator of θ when probability
distribution gδo generates the data.

14Defining densities on RM and projecting onto a full-rank Gaussian family yields KL divergence +∞ when Γ0 is
singular, because the true conditional law is supported on S while a full-rank Gaussian does not share that support.
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By iterated expectations,

D(B̃, Ω̃) = E
[
log pt(ỹt | yt−1)

]︸ ︷︷ ︸
does not depend on (B̃,Ω̃)

−E
[
log q

B̃,Ω̃
(ỹt | ỹt−1)

]
, (45)

so minimizing D is equivalent to maximizing the expected Gaussian conditional log-

likelihood on the support. Expanding the Gaussian log-density gives

D(B̃, Ω̃) = const +
1

2
log det(Ω̃) +

1

2
E
[
(ỹt − B̃ỹt−1)

⊤Ω̃−1(ỹt − B̃ỹt−1)
]
. (46)

Fix Ω̃ ≻ 0. The minimizer B̃
∗

satisfies

E
[
(ỹt − B̃

∗
ỹt−1)ỹ

⊤
t−1

]
= 0, (47)

hence B̃
∗
= Γ̃1 Γ̃

−1
0 where Γ̃k := E[ỹtỹ

⊤
t−k] and Γ̃0 = R⊤Γ0R ≻ 0.

Mapping back to RM yields

B∗ := RB̃
∗
R⊤ = Γ1 Γ

+
0 ,

so B∗ is the KL (information) projection of the true one-step-ahead conditional law on

its support onto the Gaussian VAR(1) family.

3.5 Application of DMD on Microdata from the Gorman Model

Up to this point, we have shown that B∗ is effectively low-rank and that rank-N DMD

targets B∗. The information projection perspective also makes precise the criterion

underlying this target: DMD selects the best-fitting low-rank VAR(1) approximation

to the panel’s true one-step-ahead conditional dynamics. In this section, we apply

DMD to the simulated household panel {yt}Tt=1 and evaluate how well it recovers the

spectral, state, and cross-sectional properties of the underlying dynamics.
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Figure 5: Scree plot for the household panel. The sharp elbow after the second singular

value motivates N = 2.

We begin by selecting the DMD rank N . Figure 5 presents a scree plot of singular

values of the centered snapshot matrix Y constructed from {yt}Tt=1 by stacking the

observations as columns. The sharp elbow after the second singular value suggests

that N = 2 is a natural choice, consistent with the economic structure of the model

(Section 3.3). We therefore set N = 2 in the DMD implementation below. With N fixed,

we first assess spectral recovery by comparing eigenvalues of the estimated DMD

operator B̂ to those of the true system. Figure 6 overlays the top 20 eigenvalues of A,

the eigenvalues of the population VAR(1) coefficient B∗ in (43), the DMD eigenvalues,

and the aggregate endowment persistence ρ1. With N = 2, the DMD eigenvalues

closely match those of B∗, confirming that DMD recovers the population VAR(1)

dynamics.

The theoretical connection between DMD modes and the centered measurement

matrix G can be verified numerically. This example illustrates the rank-deficient

measurement case described in Proposition 1 since the measurement matrix G has

rank 2 < Nx as we discussed in Section 3.4. From (43), range(B∗) ⊆ range(G). In

this experiment, the DMD modes Φ are nearly collinear with the leading eigenvectors

of B∗. Computing the correlation between estimated DMD modes and the leading
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Figure 6: Spectral recovery

eigenvectors of B∗, we find correlations of 0.97 for both modes, with principal angles

between subspaces of less than 0.05◦. Projecting Φ onto range(G) yields a relative

residual of about 10−12. As shown in Figure 4, the centered panel has only two singular

values with magnitude larger than 1.0× 10−10, so DMD recovers exactly two modes

corresponding to the most important aggregate state components.

Spectral recovery does not by itself imply that the associated low-dimensional

DMD state tracks the latent state. As we discussed in Section 3.4, we expect the leading

DMD modes to track the aggregate capital and endowment components of xt if DMD

recovers the low-dimensional dynamics from the household panel. Figure 7 examines

whether the estimated DMD mode coordinates track the aggregate state. Let x̃t = Φ+ yt

denote the DMD mode coordinates. For each mode, we compute its correlation with

every component of the true state xt and plot it against the state component with the

highest absolute correlation (both standardized as z-scores). Indeed, the first DMD

mode closely tracks aggregate capital, and the second tracks aggregate endowment

with very high correlation, confirming that DMD recovers the true low-dimensional

dynamics embedded in the high-dimensional panel.

Beyond time-series recovery, we can ask whether the estimated modes reproduce

the cross-sectional structure implied by the sharing rule. Figures 8 and 9 examine how
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Figure 7: DMD mode time series for the stacked panel yt compared with selected

components of the true aggregate state xt.

DMD mode loadings vary across households. The DMD modes matrix Φ ∈ RM×N

has rows corresponding to observables. Under the sharing rule (24), the component

of consumption driven by aggregate dynamics scales with µj , so households with

larger µj should load more heavily on aggregate modes. Figure 8 confirms this by

plotting the magnitudes of DMD loadings for pre- and post-redistribution income

and for consumption against household wealth percentiles. Denote these loadings by

Φ
(ypre)
jk , Φ(ypost)

jk , and Φ
(c)
jk , respectively, where households are ordered by the magnitude

of their Gorman weights µj . Figure 8 shows that households with higher percentiles

have a larger loading on DMD modes of pre-redistribution income. Although the same

trend holds for post-redistribution income and consumption, the relationship is less

pronounced because redistribution attenuates inequality.

Figure 9 reinforces the idea that the loadings reflect the sharing rule. We extract

the consumption block Φ(c) and plot |Φ(c)
jk | against household j’s Gorman weight

µj , showing that the correlation between |Φ(c)
j1 | and µj is unity, indicating that DMD

loadings recover the cross-sectional sharing rule.
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Figure 8: DMD loadings by wealth percentile for the stacked panel yt. Households are

ordered by the Gorman weights {µj} (ascending).
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Figure 9: In the 100-household experiment, DMD loadings in the consumption block

are proportional to the Gorman weights {µj}, consistent with the sharing rule (24).
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To move beyond in-sample diagnostics, Figure 10 evaluates forecasting performance

using a train-test split with training fraction 0.7. We estimate DMD on the training

sample to obtain B̂ and the training-sample mean ȳtrain. For each test observation yGL
t ,

the k-step-ahead conditional-mean forecast is

ŷGL
t+k|t = ȳtrain + B̂

k
(yGL

t −ȳtrain), (48)

which iterates the estimated VAR operator k steps forward. The figure plots the

cross-sectional median of both realized values yGL
t+k and forecasts ŷGL

t+k|t for horizons

k ∈ {1, 3, 5}. Short-horizon predictions closely track the realized median dynamics,

while longer-horizon predictions revert toward unconditional means as the stable DMD

operator is iterated forward. The same pattern holds for all cross-sectional percentiles.
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Figure 10: Out-of-sample DMD predictions in the 100-household experiment at hori-

zons k ∈ {1, 3, 5}.

Finally, the Gorman laboratory provides an informative numerical example that
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verifies key theoretical results in Section 2, particularly the implications of the rank-2

structure of the measurement matrix G documented in Figure 4. When rank(G) < Nx,

the population VAR coefficient can be written as B∗ = GAG+
Σx

, where G+
Σx

is a

weighted pseudoinverse that depends on the state covariance Σx. In this rank-deficient

case, the standard Moore–Penrose pseudoinverse G+ is not guaranteed to recover A

from B∗, but a minimal two-dimensional state representation using (kt−1, da,t) can

be constructed to recover A. Appendix B develops these results and verifies them

numerically.

4 Other Applications of PCA

Stock and Watson (2016, Sec. 2) describe how a principal-components representation of

the contemporaneous covariance matrix of a covariance-stationary vector stochastic

process is an essential component of what they call a “static” representation of a

“dynamic” factor model. That application of principal components differs substantially

from ours. To appreciate this, notice where singular value decompositions make

two appearances in our calculations.15 We use a reduced SVD Y = Ũ Σ̃Ṽ
⊤

to form

submatrices U of Ũ and V of Ṽ that appear in (13). This yields the rank-N truncation

YN := UΣV⊤, which we then use to form B̂ = Y′Y+
N . We use U and V again when

we form the reduced operator Ã = U⊤ B̂U ∈ RN×N . At this point we compute an

eigendecomposition

Ã = WΛW−1,

where columns of the N ×N matrix W are eigenvectors of Ã and eigenvalues of Ã

appear on the diagonal of the diagonal matrix Λ.

By way of contrast, Stock and Watson describe how singular value decompositions

are applied to construct a “static” representation of a “dynamic” factor model by (i)

15Many modern procedures compute eigendecompositions by first computing a singular value decomposition. For
example, see Strang (2020).
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assuming that an observed process {yt} is covariance-stationary, (ii) estimating the

M×M covariance matrix Cy of yt, (iii) using a singular value decomposition to compute

M principal components of Cy, then selecting the r most important components, then

(iv) adopting statistical detection procedures to infer q < r “factors” in what Stock and

Watson call an associated “dynamic” factor model. In Sections 2–2.3, the object targeted

by DMD is the lag-1 linear projection coefficient B∗. The rank-N DMD operator is a

low-rank estimator of this projector computed from snapshots.

A reader of Stock and Watson (2016) will recognize how our procedure instead

resides within a distinct tradition that connects LQG hidden Markov models and vector

autoregressions to infer parameters of the hidden Markov model, a tradition in which

a principal components analysis rarely makes an appearance. See especially Stock

and Watson (2016, Sec. 2). As Section 2.3 above indicates, the hidden Markov model

affiliated with our DMD procedure is a special case of the state-space models described

in Stock and Watson (2016, Sec. 2).

PCA estimators of factors and the associated loadings are identified only up to a

scale and rotation. Bai and Ng (2013) propose three sets of restrictions that imply exact

identification of the factors and loadings resulting from the PC estimator.

The first set of restrictions for PC requires that both the factors and loadings are

orthogonal. The second requires that the factors are orthogonal and that the top N ×N

block of G is lower triangular. The third leaves the factors unrestricted but requires

the top N ×N block of G to be the identity matrix. In sum, identification for principal

components requires that either the factors are orthogonal, the loadings are orthogonal,

or the loadings have special structure implying that one or more observations are noisy

measurements of the factors.

DMD yields a modal state representation of the fitted reduced-rank VAR(1) on the

DMD subspace, with diagonal Λ. The associated residuals are pseudo-innovations

unless the data are generated from VAR(1) with innovations orthogonal to the full
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past (as in the injective-measurement case of Proposition 2). Accordingly, the nonzero

eigenvalues in Λ estimate eigenvalues of the lag-1 linear projection coefficient B∗. They

coincide with eigenvalues of the structural transition matrix A only under full-column-

rank G (Proposition 2(ii)). Our framework does not require that the columns of G are

orthogonal, nor does it require that one or more observations are noisy measurements

of the factors. We summarize these comparisons in Table 1.

Identifying restrictions

Principal components DMD

PC Option 1
• 1

T

∑T
t=1 x̃tx̃

⊤
t = IN

• G⊤G is a diagonal matrix with distinct en-
tries

• Fitted reduced-rank VAR(1) on
DMD subspace with

– Λ diagonal (in modal
coordinates)

– C unrestricted

• Eigenvalues of Λ estimate B∗;
equal A eigenvalues under
full-column-rank GPC Option 2

• 1
T

∑T
t=1 x̃tx̃

⊤
t = IN

• G =

G1

G2



• G1 =


g11 0 · · · 0

g21 g22 · · · 0
...

...
. . .

...

gr1 gr2 · · · grr

 ,gii ̸= 0, i =

1, . . . , r

PC Option 3

• x̃t unrestricted

• G =

IN

G2


Table 1: Identifying restrictions for principal components and DMD

5 Concluding Remarks

This paper connects Dynamic Mode Decomposition to reduced-rank VARs and linear

state-space models, providing both theoretical foundations and empirical validation on

high-dimensional household panel data generated by a heterogeneous-agent economy.

Section 2 establishes the population theory. Proposition 1 shows that the lag-1 linear

42



projection coefficient B∗ satisfies rank(B∗) ≤ rank(G), so that B∗ captures dynamics

on the support subspace of observables. Proposition 2 establishes conditions under

which the nonzero eigenvalues of B∗ coincide with those of the latent transition matrix

A: when G has full column rank and Σx ≻ 0, we have A = G+B∗G. Propositions 3

and 4 characterize DMD as a rank-N estimator of B∗ and interpret the fitted residuals

as pseudo-innovations.

Section 3 applies DMD to a heterogeneous-agent economy with Gorman aggre-

gation, where the true aggregate dynamics are known. Using only household-level

income and consumption for 100 households, DMD with two modes recovers eigen-

values that closely match those of B∗ and align with the dominant eigenvalues of A.

The estimated mode time series correlate 0.91 and 0.96 with aggregate capital and

the endowment state, respectively, while loadings correlate with the Gorman weights

that govern redistribution perfectly. Section 3.4 provides an information-theoretic

interpretation: B∗ is the KL projection of the one-step-ahead conditional law onto a

Gaussian VAR(1) family.

Section 4 clarifies how DMD differs from principal components analysis in dynamic

factor models. While PCA targets static covariance structure, DMD exploits temporal

dependence to identify dynamic factors via a reduced-rank VAR, yielding different

identification restrictions.

The analysis also highlights limitations. When measurement is rank-deficient,

DMD recovers the dynamics visible in observables but cannot identify the full la-

tent transition matrix without additional restrictions. Nevertheless, DMD provides

a computationally efficient approach to extracting low-dimensional dynamics from

high-dimensional economic panels, and we expect it to prove useful in applications

ranging from household surveys to firm-level data.
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A Appendix

A.1 Proofs

A.1.1 Proposition 1

Proof. For (i), since yt = Gxt and xt is stationary,

Cov(yt,yt−1) = GAΣxG
⊤, Cov(yt−1) = GΣxG

⊤ .

Substituting into (5) yields B∗ = GAΣxG
⊤(GΣxG

⊤)+ = GAG+
Σx

.

(ii) follows from B∗ = G(AG+
Σx

), and if B∗ v = λv with λ ̸= 0 then v =

(1/λ)B∗ v ∈ range(G).

A.1.2 Proposition 2

Proof. Regarding (i), since G has full column rank, G+G = INx and therefore xt−1 =

G+ yt−1. Using xt = Axt−1+Cwt gives

yt = Gxt = G(Axt−1+Cwt) = GAG+ yt−1+GCwt = B̃ yt−1+ut .

Because {wt} is i.i.d. and independent of the past yt−1, the same holds for {ut}, so

ut ⊥ yt−1. Hence E[yt | yt−1] = B̃ yt−1 and at = yt−E[yt | yt−1] = ut. This completes

the first part of (i).

Let Γ0 := Cov(yt−1) and Γ1 := Cov(yt,yt−1). Orthogonality implies B̃Γ0 = Γ1.16

By definition B∗ = Γ1Γ
+
0 , so (B∗−B̃)Γ0 = 0. Since yt−1 ∈ range(Γ0) a.s., we have

(B∗−B̃)yt−1 = 0 a.s. and hence statement (i) follows.

For (ii), by Proposition 1(i), B∗ = GAΣxG
⊤(GΣxG

⊤)+. If Σx ≻ 0 and G has

16This can be seen from the fact that Γ1 = E[yt y
⊤
t−1] = E[(B̃ yt−1 +ut)y⊤

t−1] = B̃E[yt−1 y
⊤
t−1]+E[ut y⊤

t−1] =

B̃Γ0 + 0.
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full column rank, then

(GΣxG
⊤)+ = (G+)⊤Σ−1

x G+,

so B∗ = GAΣxG
⊤(G+)⊤Σ−1

x G+ = GAG+ = B̃.17 Then A = G+B∗G follows

from G+G = INx .

A.1.3 Corollary 1

Proof. Fix any symmetric Σ ⪰ 0 and let Σ1/2 denote its symmetric square root. Define

Q := GΣ1/2. Since G has full column rank, G⊤ is surjective, and therefore

range(Q⊤) = range(Σ1/2G⊤) = range(Σ1/2).

Hence Q⊤(QQ⊤)+Q is the orthogonal projector onto range(Σ1/2), so it acts as the

identity on range(Σ1/2). Hence,

Σ = Σ1/2 Q⊤(QQ⊤)+Q Σ1/2 = Σ G⊤(GΣG⊤)+ G Σ.

Applying this identity with Σ = Σ∞ in (4) yields

Σ∞ = AΣ∞A⊤+CC⊤−AΣ∞G⊤(GΣ∞G⊤)+GΣ∞A⊤ = CC⊤,

which proves (8). Under the additional assumption CC⊤ ≻ 0, we have Σ∞ ≻ 0.

Letting Q := GΣ
1/2
∞ , Q has full column rank, so Q⊤(QQ⊤)+Q = INx , which is

equivalent to

Σ∞G⊤(GΣ∞G⊤)+G = INx .

Multiplying (3) on the right by G gives KG = A.

17Because G⊤(G+)⊤ = (G+ G)⊤ = INx .
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A.1.4 Proposition 3

Proof. Recall that YN := UΣV⊤ denotes the rank-N truncated SVD of the snapshot

matrix. Assume σN > 0. Then

Y+
N = VΣ−1U⊤, B̂ = Y′Y+

N = Y′VΣ−1U⊤ .

Define the reduced operator and the DMD modes by

Ã := U⊤Y′VΣ−1, ÃW = WΛ, Φ := Y′VΣ−1W .

Then

B̂Φ = Y′VΣ−1(U⊤Y′VΣ−1)W = Y′VΣ−1(ÃW) = Y′VΣ−1WΛ = ΦΛ.

This proves statement (i).

When restricting B̂ to act on col(Φ), equivalently replace B̂ by B̂PΦ. Using Y+
N Φ =

VΣ−1U⊤Φ = VΣ−1Ã W = VΣ−1WΛ, we have

B̂PΦ = ΦΛΦ+,

and hence B̂ and ΦΛΦ+ coincide on col(Φ).18 This completes the proof.

B Minimal State Recovery in Gorman Application

Recall that with Σx = Cov(xt), the population VAR(1) coefficient in (43) can be written

as

B∗ = GAG+
Σx

, where G+
Σx

:= ΣxG
⊤(GΣxG

⊤)+ (49)

18Moreover, among all B with BΦ = ΦΛ, the unique minimizer of the Frobenius norm ∥B ∥F is ΦΛΦ+. This
follows from the KKT conditions for minB

1
2
∥B ∥2F subject to BΦ = ΦΛ.
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is the Σx-weighted pseudoinverse of G. Equation (49) is simply a re-expression of

Proposition 1(i).

When G has full column rank and Σx is positive definite, Proposition 2(ii) implies

that G+
Σx

= G+ and hence B∗ = GAG+. When rank(G) < Nx, (1) is partially

observed and G+
Σx

need not equal G+; in general, the simplification B∗ = GAG+

fails and A cannot be recovered from (B∗,G) via A = G+B∗G.

We verify these theoretical results numerically in the Gorman experiment. Table 2

compares B∗ to the projections GAG+ and GAG+
Σx

. In the full system with the

high-dimensional aggregate state, the centered state has dimension Nx = 154 and

the measurement matrix satisfies rank(G) = 2 < Nx, reflecting the rank-2 structure

discussed in Section 3.3 (see Figure 4). Consistent with Proposition 1, B∗ is matched

by GAG+
Σx

up to numerical precision, while GAG+ can deviate sharply when G is

rank-deficient.

Table 2: Comparison of population equalities and estimates in the Gorman experiment

Minimal state Full state
(kt−1, da,t) (154-dimensional)

State dimension Nx 2 154
Numerical rank(G) 2 (full) 2 (deficient)

∥B∗−GAG+ ∥F /∥B∗ ∥F 2.8× 10−14 31.4
∥B∗−GAG+

Σx
∥F /∥B∗ ∥F 1.8× 10−14 1.8× 10−14

∥G+B∗G−A ∥F /∥A ∥F 1.9× 10−14 0.982

∥G+ B̂G−A ∥F /∥A ∥F 0.0294 0.989

To illustrate the full-column-rank case, we also construct a reduced (“minimal”)

state representation using only the two aggregate factors that drive the centered panel,

namely, aggregate capital kt−1 and the aggregate endowment state da,t. Let xmin
t :=

(kt−1, da,t)
⊤ and write the centered panel as yt = Gmin x

min
t , where Gmin ∈ RM×2 has

full column rank. In our experiment, (M,T ) = (300, 250), so Gmin has shape 300× 2

and the full data matrix [y1, . . . ,yT+1] has shape 300× 251. Since Gmin has full column

rank, Proposition 1 implies B∗ = Gmin Amin G
+
min and Amin = G+

min B
∗Gmin.
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The matrix Gmin Σ̂x,min G
⊤
min has two singular values above numerical precision

(approximately 1.19 × 10−1 and 1.26 × 10−3), confirming that the minimal-state ob-

servables are effectively two-dimensional. Likewise, the demeaned snapshot ma-

trix Y = [y1, . . . ,yT ] has only two singular values above 10−10 (approximately

14.63 and 1.51), with all remaining singular values at machine precision. Apply-

ing DMD to {yt} in this minimal-state representation yields ∥B̂ − B∗ ∥F /∥B∗ ∥F =

4.80× 10−3. The recovered transition matrix is accurate up to machine precision with

∥G+
min B

∗Gmin −Amin ∥F /∥Amin ∥F = 1.9 × 10−14. By contrast, a naive attempt to

recover the full high-dimensional transition matrix via A = G+B∗G produces large

errors in this experiment ∥G+B∗G−A ∥F /∥A ∥F ≈ 0.982. Similarly, using the DMD

estimator B̂ instead of B∗, the minimal transition matrix estimate is given by

Âmin := G+
min B̂Gmin =

 0.989 0.392

−0.002 0.914


is close to the true minimal transition matrix

Amin :=

0.989 0.392

0.000 0.950


with relative error ∥G+

min B̂Gmin −Amin ∥F /∥Amin ∥F = 0.0294, which is lower than

the relative error 0.989 for the full state. Table 2 summarizes these findings in this

particular application.
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B.1 Derivations for Section 2.1

B.1.1 Derivation of (15)

Iterate equation (14) forward:

x̃t+j = Λx̃t+j−1 +Φ+ât+j (50)

x̃t+j = Λ2x̃t+j−2 +ΛΦ+ât+j−1 +Φ+ât+j (51)

= Λjx̃t +

j−1∑
s=0

ΛsΦ+ât+j−s. (52)

B.1.2 Derivation of (16)

The conditional expectation given x̃t is E[x̃t+j | x̃t] = Λjx̃t. Thus the conditional

covariance is

E
[
(x̃t+j − E[x̃t+j | x̃t])(x̃t+j − E[x̃t+j | x̃t])

⊤
]

(53)

= E
[( j−1∑

s=0

ΛsΦ+ât+j−s

)( j−1∑
r=0

ΛrΦ+ât+j−r

)⊤]
(54)

=

j−1∑
s=0

ΛsΦ+Ω̂(Φ+)⊤(Λ⊤)s. (55)
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C Parameter Values for the 100-Household Example

Table 3 lists the parameter values used in the 100-household Gorman economy of

Section 3.3. Notation follows the main text. In particular, Λs, Πs, ∆h, and Θh appear

in the service equations following (20), while ∆k, Θk, and Γ appear in the planner’s

constraints following (22).

Table 3: Parameter values for the 100-household example

Preferences and technology (scalar)

β Discount factor 0.952
Λs Service-habit loading 0
Πs Service-consumption loading 1
∆h Durable persistence 0
Θh Durable-consumption loading 0
∆k Capital persistence 0.95
Θk Capital-investment loading 1
Γ Capital productivity 0.1

Aggregate endowment process

ρ1 AR(1) coefficient 0.95
σa Aggregate shock std. dev. 0.5

Household heterogeneity

J Number of households 100
αj Mean endowment ∼ U [3, 5]
ϕj Aggregate exposure ∼ U [0.5, 1.5],

∑
j ϕj = 1

Idiosyncratic endowment shocks

Ja Absorbing households 50
σj Idio. shock std. dev. 0.2 + 4.8 p2j
ρdj Idio. shock persistence 0.9 pj

Notes: pj := 1− percentile rank of αj . Preference shocks are muted (zero loadings). See Section 3.3 for details.
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